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The importance of radiation-based images has been increasing due to their ability to provide rapid diagnosis

and facilitate treatment of lesions. Among them, the frequency of examination using computed tomography

(CT) has been increasing because of this technique’s fast examination time and high diagnostic power. How-

ever, although the criteria for screening have been presented based on many previous studies on the CT expo-

sure dose for adults, the criteria for children remain inadequate. Especially, relaxing the conditions to reduce

the exposure dose of CT will lead to generation of noises. To address this problem, many noise removal algo-

rithms have been developed. Among developed algorithms, a particularly strong interest has been focused on

deep learning methods, which are a sort of artificial intelligence (AI)-based machine learning. Therefore, the

present study aimed to develop a noise removal algorithm using the Gaussian Mixture Model (GMM), an AI-

based deep learning method, and to apply the algorithm to pediatric abdominal CT so that to evaluate the use-

fulness of the approach. PMMA phantoms with different diameters of 12, 16, 20, 24, and 32 cm, which can

express pediatric abdomen, were manufactured and used. To evaluate dose and image quality, the tube current

was fixed to 200 mAs and the tube voltage was changed from 80 to 120, and 140 kVp; thereafter, the tube volt-

age was fixed to 120 kVp and the tube currents were changed from 50 to 100, 150, 200, and 250 mAs. Accord-

ing to the results, CTDIw showed a tendency to increase alongside with increases in the tube voltage and the

tube currents, while noise decreased proportionally. In addition, the contrast decreased as the tube voltage

increased, but was shown to be almost unrelated to the tube currents. Finally, the excellent CNRD result was

measured in lowest exposure condition at 80 kVp and 50 mAs. Also, the average of CNRD with AI noise reduc-

tion algorithm was 1.6-4.2 times higher than before the application. In conclusion, the doses and characteristics

of the pediatric abdominal CT scan according to various image acquisition conditions could be successfully

identified and the efficiency of the AI noise removal algorithm developed in the present study was demon-

strated.
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1. Introduction

The importance of images obtained using radiation for

diagnosis and treatment of patients has been rapidly

increasing. Consequently, numerous studies have been

carried out and, as a result, the radiation image techno-

logy and medical image devices have made a great

progress. Among them, the use and interest of computed

tomography (CT) have recently increased in terms of the

management of the high medical exposures of CT scann-

ing. In particular, due to the occurrence of a series of

nuclear accidents−ranging from the Chernobyl accident in

the past to the recent Fukushima nuclear accident−patients'

wariness against radiation has increased, making it essential

to continue research on dose reduction [1]. However, in

general, if the dose is reduced when CT images are

acquired, although safety against exposure will increase,

many noises will occur, leading to a deterioration of image

quality.

To amend the situation, many studies on noise reduction
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algorithm have been conducted. In the beginning, methods

using the mean value of the region of interest (ROI), such

as median filters, were used. However, this approach

yielded a shortcoming of the removal of information

alongside with noises. To address this problem, various

techniques have been developed, such as wavelet trans-

form, which preserves and processes spatial information

when the information is transformed from the spatial

domain to the frequency domain and total variation (TV)

that removes noises using probabilistic distribution obtained

through numerical formulas, taking advantage of the fact

that diverse arithmetic operations have become possible

due to the development of computers [2-4]. 

Recently, as following the advent of AlphaGo, interest

in artificial intelligence (AI) has been increased, attempts

have been made to combine CT with AI. In the field of

medical technology, a domain of AI called machine learning,

which is an algorithm to learn information in existing data

to perform works on new data, has received particular

research attention, and out of it, deep learning has emerged.

Deep learning is a method of enhancing the learning

ability of neural networks by piling up artificial neural

networks. Early artificial neural networks were supervised

learning systems for which the data containing correct

answers should be provided by experts for learning. How-

ever, as learning was implemented with large amounts of

data, overfitting, which is learning even unnecessary

information, has occurred. To complement the above, the

restricted Boltzmann machine (RBM) that learns to follow

the Boltzmann distribution and the drop out system that

omits variables in the networks have been developed, so

that the problem of overfitting was improved. In addition,

unsupervised learning in which correct answers are not

given to learning data has also become possible. Therefore,

studies on noise reduction algorithms have been actively

conducted in diverse ways to improve image quality [5,

6].

On the other hand, apart from the development of noise

reduction algorithms, although examination standards have

been presented through continuous studies to prepare

countermeasures against the high exposures of CT ex-

amination in the case of adults, consideration of exposure

is insufficient in the case of pediatric CT. This is so

because not only potential risks are high in children (since

children are more sensitive as compared to adults), but

also the overall examination standards have not been

accurately defined. In particular, few studies have been

conducted on the optimization of image quality for dose

reduction in pediatric abdominal CT scanning. Therefore,

in the present study, CT phantoms capable of simulating

the abdomens of children will be manufactured to acquire

CT images while changing kVp and mAs; the dose and

image quality will be evaluated, and the developed AI

based noise reduction algorithm will be applied in order

to prove the usefulness.

The structure of this paper is as follows: in Section 2,

we describe our noise reduction algorithm with AI in

detail and experimental conditions including phantom

manufacturing. In Section 3, the noise reduction algorithm

is applied to the phantom imaged obtained through the

experiment to compare the dose, image quality using con-

trast-to-noise ratio (CNR), and contrast-to-noise ratio and

dose (CNRD) of each phantom images with each other.

Finally, in Section 4, based on the contents compared as

described above, criteria for pediatric abdominal CT

scanning are proposed.

2. Materials and Methods

2.1. Noise reduction algorithm with AI

Noise reduction algorithms are algorithms to remove

the noises that inevitably occur in images and have the

following basic equation (see Eq. (1)):

 (1)

where D is the acquired images, Tx is the clean images,

and ρ is the noise. Noise reduction algorithms are divided

into the methods that find and remove ρ and those that

directly obtain Tx without removing ρ. The deep learning

method used here will employ a noise reduction algorithm

that will directly obtain Tx. The Gaussian Mixture Model

(GMM) will be used as a method of obtaining Tx to get

the originally clean image quality of the images and to

execute the noise reduction algorithm [7].

The GMMs made assuming an appropriate probability

density function in order to know the data distribution

characteristics are called probability models. Among them,

the Gaussian probability distribution is the most widely

used model. However, the Gaussian probability distribution

has the limitation of being capable of using only the data

in unimodal forms around the mean. Therefore, the GMM

is being used. When M GMM filters are used in images,

the equation is as follows (see Eq. (2)): 

(2)

where  is the Gaussian probability density

function, θi is the parameters of the probability density

function, which is the ith component that are mean and

covariance matrix, and ωi refers to the ith random variable.

P(ωi) refers to the relative importance of the ith component

in the entire mixed probability density function and

should satisfy  and .

D = Tx + ρ

p x|θ( ) = Σi 1=

M
 p x |ω i, θi( ) P ωi( )

p x|ω i, θi( )

0 P ω i( ) 1≤ ≤ Σi 1=

M
P ωi( ) = 1
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Then, the Gaussian probability density that constitutes

the jth component is as follows (see Eq. (3)):

 (3)

In Eq. (3), μj is mean and  is variance. The mixed

probability that combined M pieces of these individual

components is as follows (see Eq. (4)):

 (4)

When GMM is used, Z, i.e. a hidden random variable

such as maximum likelihood function, should be estimated.

To find the best estimate through repetitive operations, the

EM algorithm is used for the estimation. The EM

algorithm is divided into E-step and M-step. First, in the

E-step (Expectation - step), the expected value of the

hidden random variable is calculated so that it can be used

instead of the observed value. In the M-step (Maximization-

step), the value of the parameter that maximizes the

likelihood function is searched using the observed data x

and the expected value of the hidden random variable.

The solving process is as follows: first, the values of the

parameters are arbitrarily determined in the E-step and

then the expected value E [Z] of the hidden variable Z is

calculated using the probability model determined by the

determined parameters. For each observed data xi, the

probability for the value Zi of the hidden random variable

to (1,0) and the probability to be (0,1) should be

calculated. Using parameter values, the probabilities can

be calculated as follows (see Eq. (5)): 

 (5)

The M-step is a step of a new estimating the parameter

using the value of the hidden variable z calculated in the

E-step. Although the groups from which individual data xi
have come cannot be exactly known, the parameter can

be calculated as follows. In Eq. (5), if the partial

differentiation is applied to find the value of μj that is 0,

the following equation can be obtained (see Eq. (6)):

 (6)

Since  means the ratio of the jth group in the

entire data, if the equation for partial differentiation is

used in the above method so that the value becomes 0

considering  the following equation can be

obtained (see Eq. (7)):

 (7)

When M-step has been implemented, a new parameter

modified from the previous parameter is obtained. Using

the parameter, the E-step to calculate the expected value

of the hidden variable z or probability value can be

implemented again. The M-step and E-step are repeated

so that to estimate a more accurate parameter. Figure 1

shows a flow chart of the overall process.

p xn|ωj, θ( ) = p xn|μj, σj

2

( )

σj

2

p xn|θ( ) = Σi 1=

M
 p xn|μj, σj

2

( )P ωJ( )

P ωi = 1|xi, μi, σj

2

( ) = p ω j|xi, θ( ) = 
p xn|μj, σj

2

( )p ωj( )

p xn |θ( )
------------------------------------------

μj = 
Σn 1=

N
p ωj |xn( )xn

Σn 1=

N
p ω j|xn( )

-------------------------------------

P ωj( )

P Z = j|xi( )

P ωj( ) = 
1

N
----Σi 1=

N
P ω j|xn( )

Fig. 1. The schematic diagram for deep learning flow chart using Gaussian Mixture Model (GMM) algorithm.
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2.2. Equipment and experimental condition

Figure 2 shows the CT equipment and phantoms used

in the experiment. The CT equipment is SOMATOM

Definition AS with 128 slice (Siemens). PMMA phantoms

with diameters of 12, 16, 20, 24, and 32 cm, which can

simulate pediatric abdomen, were manufactured. The tube

current was fixed to 200 mAs and the tube voltage was

changed from 80 to 120 and 140 kVp; thereafter, the tube

voltage was fixed to 120 kVp and the tube currents were

changed from 50 to 100, 150, 200, 250, and 300 mAs to

conduct the experiment.

2.3. Evaluation method

We used CTDIw, CNR and CNRD to evaluate the dose

and image quality. The dose was examined through

CTDIw; CNR was used to evaluate the image quality and

CNRD values were obtained to examine the correlation

between the dose and image quality. CTDIw represents

the average dose in the scan plane of Perspex phantoms.

Figure 3 shows the method to obtain CTDIw [8]. The

average dose of the entire phantoms is shown by the

value obtained by adding 1/3 of the dose shown in the

dosimeter located in the center and 2/3 of the average

value of the doses shown in the dosimeters located on the

edge. 

We used CNRD to evaluate the relationship between

the image quality and the dose and to derive the optimized

value. The equation to obtain CNRD is as follows:

 (8)

3. Results

Figure 4 shows the CTDIw measured by phantom

diameter while changing kVp and mAs. As shown in Fig.

4(a), the CTDIw values were measured as 21.15, 63.17,

and 83.55 mGy at 80, 120, and 140 kVp, respec-

tively, in the smallest-diameter phantom. In the largest-

diameter phantom, the values were measured as 10.05,

24.80, and 32.05 mGy at 80, 120, and 140 kVp, respec-

tively. In general, the CTDIw values measured at five

diameters almost linearly increased as kVp increased and

it was identified that the smaller the diameter, the larger

the amounts of increase. In addition, as can be seen in

Fig. 4(b), in the smallest-diameter phantom, the CTDIw

values were measured as 15.91, 30.17, 47.35, 63.17,

75.99 and 93.19 mGy at 50, 100, 150, 200, 250 and 300

mAs, respectively. In the largest-diameter phantom, the

CNRD = 
CNR

Dose
-----------------

Fig. 2. (Color online) The photo of (a) SOMATOM Definition AS CT device used in experiment and (b) manufactured phantom

with different diameters (12, 16, 20, 24, and 32 cm).

Fig. 3. (Color online) The schematic diagram of method to

obtain CTDIw. CTDIw is a weighted average of the CTDI at

the center and periphery of the phantom and represents the

average radiation dose over the X and Y direction.
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values were measured as 6.08, 12.35, 18.35, 24.8, 30.5,

and 36.91 mGy at 50, 100, 150, 200, 250, and 300 mAs

respectively. In this case, CTDIw increased as mAs

increased and that the smaller the diameter, the larger the

amounts of increase in all five diameters.

Figure 5 shows noise values   a ccording to the changes

Fig. 4. (Color online) The acquired dose results as a function of (a) kVp and (b) mAs with various pediatric abdominal phantom

diameters.

Fig. 5. (Color online) The acquired noise results (HU) as a function of (a) kVp and (b) mAs with various pediatric abdominal

phantom diameters before applying the noise reduction algorithm. Also, the acquired noise results as a function of (c) kVp and (d)

mAs with various pediatric abdominal phantom diameters after applying the noise reduction algorithm.
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in the tube voltage and tube current before and after

applying the developed noise reduction algorithm. Figures

5(a) and (b) show graphs of the noises (Hounsfield Unit;

HU) measured before applying the noise reduction

algorithm; Figures 5(c) and (d) show graphs of the noises

measured after applying the noise reduction algorithm. As

can be seen in Fig. 5(a), in the smallest-diameter phantom,

the noise values were measured as 5.89, 4.18, and 3.87

HU at 80, 120, and 140 kVp, respectively. In the largest-

diameter phantom, the values were measured as 38.09,

23.58, and 18.1 HU at 80, 120, and 140 kVp, respectively,

indicating that the noise decreased as the tube voltage

increased. When the above results were reconstructed

with the noise reduction algorithm, the noise values

decreased as the tube voltage increased. In the smallest-

diameter phantom, the values were 2.89, 2.35, and 2.11

HU at 80, 120, and 140 kVp, respectively, and, in the

largest-diameter phantom, the values were 8.55, 6.85, and

6.10 HU at 80, 120, and 140 kVp, respectively. Therefore,

it was identified that, compared to before the application,

the noises decreased for 1.7-4.4 times when the noise

reduction algorithm was applied (see Fig. 5(c)). In addition,

as can be seen in Fig. 5(b), in the smallest-diameter

phantom, the noise values were measured as 6.59, 5.83,

4.78, 4.18, 3.51, and 2.87 HU at 50, 100, 150, 200, 250,

and 300 mAs, respectively and, in the largest-diameter

phantom, the noise values were measured as 35.89, 30.19,

25.03, 23.58, 21.12, and 20.58 HU at 50, 100, 150, 200,

250, and 300 mAs, respectively, indicating that the noises

decreased as the tube current increased. When the above

results were reconstructed with the noise reduction

algorithm, the noise values decreased from 3.44 to 2.81,

2.63, 2.35, 2.09, and 1.51 HU in the smallest-diameter

phantom and from 8.31 to 7.5, 7.18, 6.85, 6.78, and 6.72

HU in the largest-diameter phantom as the tube current

increased from 50 to 100, 150, 200, 250, and 300 mAs.

Therefore, as compared to before the application, the

noises decreased for 1.6-4.3 times when the noise reduction

algorithm was applied, indicating that when the noise

reduction algorithm was applied, quite some noises were

Fig. 6. (Color online) The acquired contrast results as a function of (a) kVp and (b) mAs with various pediatric abdominal phantom

diameters before applying the noise reduction algorithm. Also, the acquired contrast results as a function of (c) kVp and (d) mAs

with various pediatric abdominal phantom diameters after applying the noise reduction algorithm.
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removed in all conditions. 

Figure 6 shows contrast values according to the changes

in the tube voltage and tube current before and after

application of the developed noise reduction algorithm.

Figures 6(a)-(b) shows graphs of contrast before the

application of the noise reduction algorithm; Figures 6

(c)-(d) shows graphs of contrast after the application of

the noise reduction algorithm. As can be seen in Fig. 6

(a), in the smallest-diameter phantom, the contrast was

measured as 352.21, 241.70, and 212.72 at 80, 120, and

140 kVp, respectively and, in the largest-diameter phantom,

the contrast was measured as 313.1, 214.3, and 191.6 at

80, 120, and 140 kVp, respectively, indicating that contrast

decreased as the tube voltage increased. In the case of

Fig. 6(b), in the smallest-diameter phantom, the contrast

was measured for 241 at 50, 100, 150, 200, 250 and 300

mAs and, in the largest-diameter phantom, the contrast

was measured for 214 at all current values, indicating that

contrast is not significantly related to tube current and that

contrast was not changed very much after the application

of the noise reduction algorithm as compared to before

the application.

Figure 7 shows a graph regarding CNRD drawn based

on the measured CTDIw, noise, and contrast as described

above. Figure 7(a)-(b) shows the graphs of CNRD before

the application of the noise reduction algorithm and Fig.

7(c)-(d) shows the graphs of CNRD after the application.

As shown in Fig. 7(a), in the smallest-diameter phantom,

CNRD was measured as 13.0, 7.2, and 6.0 at 80, 120, and

140 kVp, respectively, and in the largest-diameter phantom,

CNRD was measured as 2.5, 1.9, and 1.8 at 80, 120, and

140 kVp, respectively, indicating that CNRD decreased as

the tube voltage increased. When the above results were

reconstructed with the noise reduction algorithm, in the

smallest-diameter phantom, CNRD was measured as 25.6,

12.6 and 10.9 at 80, 120, and 140 kVp, respectively, and

in the largest-diameter phantom, CNRD was measured as

12.3, 5.8, and 5.4 at 80, 120, and 140 kVp, respectively,

indicating that CNRD decreased as the tube voltage

increased and that CNRD increased for 1.7-4.9 times after

Fig. 7. The acquired CNRD results as a function of (a) kVp and (b) mAs with various pediatric abdominal phantom diameters

before applying the noise reduction algorithm. Also, the acquired CNRD results as a function of (c) kVp and (d) mAs with various

pediatric abdominal phantom diameters after applying the noise reduction algorithm.
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the application of the noise reduction algorithm as

compared to before the application (see Fig. 7(c)). On the

other hand, unlike in Fig. 7(a), as shown in Fig. 7(b), in

the smallest-diameter phantom, CNRD was measured as

9.2, 7.5, 7.3, 7.2, 7.8, and 8.7 at 50, 100, 150, 200, 250,

and 300 mAs, respectively and in the largest-diameter

phantom, CNRD was measured as 2.4, 2.0, 1.9, 1.8, 1.8,

and 1.7 at 50, 100, 150, 200, 250, and 300 mAs, indicating

that, unlike in the results following changes in kVp,

CNRD did not change according to mAs. When the above

was reconstructed with the noise reduction algorithm, in

the smallest-diameter phantom, CNRD was measured as

17.2, 15.3, 13.0, 12.6, 12.9, and 16.1 at 50, 100, 150, 200,

250, and 300 mAs, respectively, and in the largest-

diameter phantom, CNRD was measured as 10.3, 8.0, 6.9,

6.2, 5.6, and 5.2 at 50, 100, 150, 200, 250, and 300 mAs,

respectively, indicating that, as compared to before the

application, CNRD increased for 1.6-4.2 times after the

application of the noise reduction algorithm; however, the

differences were not consistent (see Fig. 7(d)). The above

can be attributed to occurrence of errors due to variations

in the tube current examination time and consistent results

can be obtained by increasing the number of times of

experiments and obtaining average values. Consequently,

both before and after the application of the noise reduction

algorithm, in phantoms of all diameters, higher CNRD

values could be obtained when kVp and mAs were lower.

Figure 8 shows the images of the 32 cm phantom

diameter taken at 80, 120, and 140 kVp conditions before

and after the application of the noise reduction algorithm.

4. Discussion

In the present study, we developed CTDI phantoms for

pediatric abdomens, acquired CT images under various

kVp and mAs conditions, and developed and applied a

noise reduction algorithm to compare the dose and image

quality before and after application.

Our results demonstrate that the dose increased as the

tube voltage and the tube current increased and the

diameter of phantoms decreased, while noises decreased

as the tube voltage and the tube current increased and the

diameter of phantoms decreased. In addition, contrast

decreased as the tube voltage and phantom diameter

increased, but was not much affected by the changes in

the tube current. 

Based on the CNRD results coupled with the results

outlined above, we demonstrate that the proposed AI

based noise reduction algorithm is more advantageous

when more noises are generated, and, finally, the most

Fig. 8. The example of acquired 32 cm phantom diameter images using 80, 120, and 140 kVp with (a) before and (b) after applying

the noise reduction algorithm.
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efficient resultant value could be obtained in the lowest

condition.

5. Conclusion

In conclusion, in the present study, we proved the

usefulness of the AI-based noise reduction algorithm and

identified the optimal protocol for pediatric abdominal

examination. In further research, we will model phantoms

for not only the abdomen, but also for diverse regions to

present an optimal protocol for the overall pediatric CT

scan.
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