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This paper presents an analytical method for calculating the magnetic field in a new linear permanent-magnet

vernier (LPMV) machine, thus predicting the electromagnetic vibration. The main vibration source is the nor-

mal force between the mover and the stator of the LPMV machine. Firstly, the air-gap flux density is calcu-

lated and analyzed using the rotor permeance to modulate the magneto-motive force, and is verified by the

finite element (FE) results. Then, the harmonics of the normal force density is calculated, the normal force and

thrust force are analyzed. Secondly, the natural vibration modes and the transient displacement of the mover

are predicted by FE method, and the relationship between the normal force density and the vibration is

determined. Finally, experimental results are given for verification. This study is instructive for the design of a

high-precision and low-vibration LPMV machine.

Keywords : magneto-motive force, normal force density, vibration analysis, linear permanent-magnet machine, ver-

nier 

1. Introduction

Permanent-magnet (PM) machine has been paid great

attention [1]. Especially, the linear machine has been

widely used for their high dynamic performance and can

be driven directly without the use of any mechanical

converter in direct-drive applications [2-6]. Among them,

linear PM vernier (LPMV) machine is more suitable for

low-speed and high-torque applications, and some machine

topologies with improved electromagnetic properties have

been proposed [7-9]. Very recently, a new LPMV machine

has been proposed [10] and analyzed [11]. This machine

has robust structure, high force density, and low cost,

which is very suitable for long stroke applications.

However, the vibration and acoustic noise still seriously

affect the operational performance of this linear machine

drive. For the LPMV machine, the large normal force is

produced between the stator and mover cores in addition

to the thrust force, resulting in frictional force perturbation,

which greatly influences the thrust force fluctuation and

the vibration. Especially, when the frequency of the normal

force is same as the natural frequency of the machine,

resonance will occur. In fact, the vibration amplitude is

determined by the magnetic force and the material pro-

perties of the machine. Furthermore, based on the operation

principle of the LPMV machine, rich harmonics are

produced due to the modulation of the magnetic field,

thus emerging abundant lower order harmonics of the

normal force density, which is very significant for vibration

and noise.

In the development of linear PM machines, most of

literatures are based on the electromagnetic analysis or

the optimal design [12, 13], rather than the vibration and

acoustic noise induced by the normal force. So far, only a

few studies have been reported on the normal force or the

vibration of a PM linear machine. Recently, two sym-

metrical structures were proposed to suppress the normal

force with PM group shifting of the PM linear machine

[14]. In [15], some transverse flux linear machines with

different utilizations of PMs were investigated. The results

showed that more employment of PMs leads to higher

flux concentration in the air-gap and provides higher

thrust force.

This paper aims to investigate the normal force and

vibration characteristics of the LPMV machine. Firstly,

the topology and operation principle of the LPMV machine

will be briefly introduced. Secondly, the air-gap flux

densities on the PM and armature fields will be analyzed
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by the magneto-motive force (MMF) and the air-gap

surface permeance of the stator. Thirdly, the normal force

density will be obtained by finite element (FE) method,

the normal force, the thrust force, and the fluctuations are

analyzed. Then, the main natural vibration modes and the

transient vibration of the mover will be predicted, the

relationship between the normal force density and the

vibration will be determined. Finally, the experimental

measurements will be given for verification.

2. LPMV Machine

The cross-section and the prototype of the three-phase

LPMV machine are shown in Fig. 1. Both the PMs and

the concentrated armature windings are placed in the

short mover, and each armature tooth has four split teeth,

while the long stator is designed as a simple iron core

with salient poles. Each phase winding is composed of

two concentrated coils connected in series. In order to

focus the PM flux, the machine adopts the special PM

arrays, whose magnetization directions are shown by the

arrows in Fig. 1(a). The vertically magnetized PM is

sandwiched between the two horizontally magnetized

PMs to reduce the PM fringing leakage flux, hence

improving air-gap flux density. Every big armature tooth

has three PM arrays separated by four split teeth.

The operation principle of the LPMV machine is based

on the magnetic field modulation. The 2-pole magnetic

field produced by the three-phase armature windings on

the mover is modulated by the 20 stator teeth. This

modulation produces 18-pole magnetic field in the air-gap

which interacts with the 18-consequent-pole PM field on

the mover to produce a thrust force. Fig. 2 shows the

magnetic field at different mover positions, in which

phase B is used as an example. When the vertically

magnetized PMs in the mover slot align with the stator

teeth as shown in Figs. 2(a) and 2(c), the flux linkage of

phase B is maximum. In Figs. 2(b) and 2(d), when the

horizontally magnetized PMs align with the stator teeth,

no flux link phase B at the two positions. It should be

noted that both coils of one phase can obtain the

maximum or minimum PM flux linkage at the same time.

It means that each coil is sufficiently utilized, which

results in a high power density in the LPMV machine.

The LPMV machine possesses low cost and mechanical

robustness due to the simple long stator core, which is

very suitable for long stroke applications. Moreover, since

the horizontally magnetized PMs significantly reduce the

leakage flux, this machine provides high thrust force

density. In addition, the thrust force fluctuation is lower

than the cogging force due to appropriate reluctance force

[10]. However, this machine still suffers from vibration

and acoustic noise originated from the large normal force.

This is a significant drawback which will deteriorate the

performance of the LPMV machine in high-precision

applications. The normal force and the vibration induced

by normal force will be investigated in the following

discussions.

3. Flux Density Analysis

3.1. Air-Gap Flux Density on No Load

The air-gap PM MMF generated by the PM arrays with

consideration of the split teeth is assumed to be a square

Fig. 1. (Color online) LPMV machine. (a) Topology. (b) Split

teeth. (c) Prototype.

Fig. 2. (Color online) Magnetic field at different positions. (a)

0°. (b) 90°. (c) 180°. (d) 270°.
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wave with an air-gap circumferential position. Fig. 3(a)

shows the air-gap PM MMF in the short mover, and its

Fourier series can be derived as 

(1)

where

 (2)

where x is the air-gap circumferential position, La is the

effective length of the stator, a and b are the width of the

horizontally and vertically magnetized PMs, respectively.

According to (1), the 6n (n = 1, 2, 3...) harmonic orders of

the PM MMF exist because the mover has six armature

teeth, as shown in Fig. 1(a), and the spatial harmonics of

the PM MMF by (1) are shown in Fig. 4.

The air-gap permeance model with consideration of the

stator teeth is shown in Fig. 3(b). Its Fourier series can be

expanded as

 (3)

where

 (4)

Ps is the effective teeth number of the long stator with Ps

= 20, x0 is the initial position, vt is the moving speed of

the short mover, c and d are the width of the slot and the

teeth in the stator, respectively. According to (3), the mPs

(m = 1, 2, 3,...) orders of the permeance harmonics exist,

as shown in Fig. 5.

The PM MMF is modulated by the permeance of stator

teeth, then, the air-gap normal flux density on no load can

be deduced by [16]

 (5)

where

 (6)

Solving (5), the flux density on no load can be predicted

with acceptable accuracy, as shown in Fig. 6(a). According

to (5), it is also predicted that the 6n, mPs, and |6n ± mPs|

(n, m = 1, 2, 3,…) harmonic orders of the flux density

exist, which agrees well with the FE results, as shown in
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Fig. 3. (Color online) PM MMF and permeance models.

Fig. 4. (Color online) Spatial harmonics of PM MMF by

analytical method.

Fig. 5. (Color online) Spatial harmonics of permeance by

analytical method.
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Fig. 6(b) and Table 1. It can be seen that some harmonics

exist, which result from the modulation of the permeance

of stator teeth and the PM MMF. Based on (5) and Figs. 4

and 5, the amplitudes of the mPs order harmonics F0λm

are very small, however the amplitudes of the 6n order

harmonics Fnλ0 are relatively high. So, the dominant

harmonics of the normal flux density on no load are 6n,

such as the 6th, 12th, 18th, and 24th orders. Moreover, the

2nd flux density harmonic exists. It is primarily caused by

the interaction between the 18th PM MMF harmonic and

the 20th permeance harmonic of the stator.

3.2. Air-Gap Flux Density on Armature Field

The air-gap windings MMF generated by armature

windings is also assumed to be a square wave with an air-

gap circumferential position. Both the armature teeth and

the split teeth have effects on the MMF, and these effects

are separately considered in this study. Fig. 7 shows the

air-gap windings MMF with consideration of the

armature teeth and the split teeth in the short mover. The

phase currents are given as

 (7)

where Im is the maximum value of the phase current. The

relationship between the electrical angular frequency ωe

and the moving speed of the mover vt can be expressed as

 (8)

where τ is the slot pitch of the stator, Te is the electrical

sin( )

2
sin( )

3

2
sin( )

3

A m e

B m e

C m e

i I t

i I t

i I t

ω

π
ω

π
ω

⎧
=⎪

⎪
⎪

= −⎨
⎪
⎪

= +⎪
⎩

2 2 t
e

e

v

T

π π
ω

τ
= =

Fig. 6. (Color online) Normal flux density on no load pre-

dicted by FE and analytical methods. (a) Waveforms. (b)

Harmonics.

Table 1. Spatial harmonics of normal flux density on no load.

Harmonic order Value Amplitude

6n 6, 12, 18, 24, 30, 36, 42, … F
n
λ0

mP
s
 20, 40, 60, … F0λm

|6n±mPs| 2, 4, 8, 10, 14, 16, 22, 26, … F
n
λ

m
/2

Fig. 7. Armature MMF models. (a) Only considering the

armature teeth. (b) Only considering the split teeth.
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period.

According to Fig. 7(a), the Fourier series of each phase

winding MMF only considering the armature teeth can be

derived as

 (9)

where

 (10)

 (11)

Nc is the number of coil turns of each phase winding.

According to Fig. 7(b), the Fourier series of each phase

winding MMF only considering the split teeth can be

derived as

(12)

where

(13)

Then, the windings MMF considering the armature

teeth and the split teeth can be approximatively obtained

by 

 (14)

Based on (10) and (13), when n is even integer (except

for the multiples of 3, because the LPMV machine has

three phases), that is, n = {2, 4, 8, 10, 14, 16, 20, 22, 26,

28,…}, the MMF of each phase winding exists. When n

is odd integer, the M1n and M2n are zero, the MMF of each

phase winding does not exist. Then, the windings MMF

harmonics of the LPMV machine have {2, 4, 8, 10, 14,

16, 20, 22, 26, 28,…}, that is 6k-2 and 6k-4 orders, where

k is a positive integer.

The normal flux density of armature field can be

obtained by

 (15)

Figure 8 shows the normal flux density of the analytical

and FE results. It can be seen that the analytical result

agrees well with the FE-predicted one, except that the

amplitudes of the FE-predicted harmonics with lower

order are slightly higher than the analytical ones. Since

the windings MMF Fw(x, t) has 6k-2 and 6k-4 harmonics,

and the permeance l(x, t) has mPs harmonics, the normal

flux density of armature field has 6k-2, 6k-4, mPs, 6k-

2 ± mPs, and 6k-4 ± mPs harmonics, as shown in Fig. 8(b)

and Table 2.
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Fig. 8. (Color online) Normal flux density on armature field

predicted by FE and analytical methods. (a) Waveforms. (b)

Harmonics.

Table 2. Spatial harmonics of normal flux density on armature

field.

Harmonic order Value

6k-2 and 6k-4 2, 4, 8, 10, 14, 16, 20, 22, 26, 28, …

mP
s 

20, 40, 60, …

|6k-2±mP
s
| and |6k-4±mP

s
| 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, …
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Figure 9 shows the spatial harmonics of normal flux

density on armature field with different exciting phase

currents. It can be seen that each harmonic rapidly increase

with the increase of phase current, and the amplitudes of

the normal flux density harmonics are proportional to the

phase current. Furthermore, the 2nd harmonic which is the

dominant component on armature field increases rapidly,

and the increment of harmonic amplitude decreases with

the increase of the harmonic order.

3.3. Air-Gap Flux Density on Load

The normal flux density on load can be obtained by

 (16)

Figure 10 shows the spatial harmonics of normal flux

density on load and no load. The lower order harmonics

instead of the higher order ones rapidly increase with the

increase of phase current, because the amplitudes of the

normal flux density harmonics on armature field are

proportional to the phase current, as shown in Fig. 9. So,

with the increase of phase current, the dominant harmonics,

such as the 18th and 24th harmonics, are nearly as same as

ones on no load, but the lower order harmonics, such as

the 2nd and 4th harmonics, are significantly increased, as

shown in Fig. 10(b). The rapid variation of the lower

order harmonics of flux density on armature field affects

the lowest order harmonic of the normal force density,

thus seriously affecting the machine vibration, ultimately.

Similar to magnetic gears or vernier machines [17, 18],

the relationship among the effective pole number of PMs,

PPM, the number of active stator teeth, Ps = 20, and the

pole-pair of armature winding, Pw = 2, is given by [10]

 (17)

Therefore, the highest-amplitude harmonic order of the

normal flux density is modulated to 18, as shown in Fig.

10.

4. Normal Force and Thrust Force Analyses

4.1. Air-Gap Normal Force Density

By using Maxwell Stress Tensor method which is the

popular method to calculate electromagnetic force, the

normal force density of the LPMV machine can be

calculated from [14]

 (18)

where By(x, t) is the y-component flux density, which is

the normal flux density, Bx(x, t) is the x-component flux

density, and μ0 is the permeability of air. Generally, the

amplitude of x-component flux density is greatly smaller

than the normal one, so it can be neglected generally.

Assuming that the harmonic orders of the normal flux

density on no load are u1, u2, u3,… and those of the

armature field are v1, v2, v3,…, then, according to (18) and

the Fourier series of the normal flux density, the orders of

the normal force density will be as follows:

1) q = 2ui, ui ± uj (i = j = 1, 2, 3,…) which are caused by

the PM field only.

2) q = 2vi, vi ± vj (i = j = 1, 2, 3,…) which are caused by

the armature field only.

3) q = ui ± vj (i = j = 1, 2, 3,…) which are caused by the

interaction between the PM field and the armature field

only.
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Fig. 9. (Color online) Spatial harmonics of normal flux den-

sity on armature field.

Fig. 10. (Color online) Spatial harmonics of normal flux den-

sity. (a) Waveforms. (b) Harmonics.
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For the LPMV machine, the harmonics of the normal

force density on load are richer than that on no load. Fig.

11 shows the spatial harmonics of normal force density in

the air-gap under different phase currents. It can be seen

that the odd harmonics of normal force density exist due

to the margin effect, but the amplitudes are very small

and can be neglected. Based on (18), the highest normal

force density harmonic is composed of the dominant

harmonics of the normal flux density. When the phase

current is small or on no load, the highest normal force

density component is the 42nd harmonic, which is

dominantly composed of the 18th and 24th normal flux

density harmonics, as shown in Fig. 12(a). As shown in

Fig. 11, the 42nd harmonic changes little with the increase

of phase current due to the little change of the 18th and

the 24th normal flux density harmonics.

Existing literatures show that the lowest spatial order of

the normal force density harmonic results in the lowest

vibration mode order, and the lower order normal force

harmonics with high-amplitude are very important from

the viewpoint of vibration and acoustic noise [19]. Since

the vibration of a machine is inversely proportional to the

fourth power of the mode order, and proportional to the

amplitude of the harmonics. For the LPMV machine, the

lowest order of the normal force density harmonics is 2,

namely, the greatest common divisor of the effective pole

number of PMs PPM and the active stator tooth number

Ps, and it will induce high machine vibration and acoustic

noise. Furthermore, the radar plots of the normal forces

on each split tooth and each PM, as shown in Fig. 13,

implies that the dominant vibration mode of the LPMV

machine is 2, which is the lowest spatial harmonic order

of the normal force density.

The 2nd normal force density harmonic is caused by lots

of normal flux density harmonics, such as follows:

1) The interaction between the 20th and 18th harmonics

of normal flux density, which is the dominant component.

2) The interaction between the 2nd and 4th harmonics of

Fig. 11. (Color online) Spatial harmonics of normal force den-

sity.

Fig. 12. (Color online) Amplitudes of normal force density

harmonic components. (a) 42nd harmonic. (b) 2nd harmonic.

Fig. 13. (Color online) Normal force on each stator tooth and

each PM. (a) No load. (b) Load.
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normal flux density.

3) The interaction between the 4th and 6th harmonics of

normal flux density.

4) The interaction between the 24th and 26th harmonics

of normal flux density.

These corresponding amplitudes of radial force density

compositions are positive or negative, as shown in Fig.

12(b), and will be offset partly each other. All of these

compositions contribute together to the 2nd normal force

density harmonic. It can be seen that the amplitude of the

2nd order normal force density harmonic increases

obviously with the increase of phase current. 

4.2. Normal Force and Thrust Force

The normal force and detent force caused by both the

end effect and the slotting effect also exist in the LPMV

machine. These force components due to slotting and end

effect can be separated. The normal force component of

the LPMV machine can be expressed as

 (19)

Assuming that the stator length is much larger than the

mover length, the stator length is lengthened from 6 to 12

armature teeth, that is, the mover length is two times that

of the original one, then, the normal force component is

 (20)

The normal force component due to slotting effect

Fy_slot and the component due to end effect Fy_end can be

obtained by

 (21)

Figure 14 shows the separated normal forces and its

fluctuations. The fluctuation of Fy_end and the one of Fy_slot

have opposite phase, and partly offset each other, so,

smaller normal force fluctuation can be obtained. In

addition, as shown in Fig. 14(a), the end effect normal

force is much smaller than the slotting effect one and can

be neglected.

The forces and force fluctuations under different

conditions are shown in Figs. 15 and 16, respectively. It

can be seen that the amplitudes of thrust force and normal
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Fig. 14. (Color online) Normal force components due to slot-

ting and end effect. (a) Waveform. (b) Fluctuation.

Fig. 15. (Color online) Thrust force. (a) Waveform. (b)

Fluctuation at current 2.3 A. (c) Fluctuation at current 5 A.
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force almost linearly increase with the increase of phase

current, as shown in Figs. 15(a) and 16(a). Furthermore,

the thrust force fluctuation at current 5 A is the lowest

one. Since the thrust force fluctuation on armature field

and the cogging force have the difference of 180 electrical

degrees, the thrust force fluctuation at current 5 A is

lower than the one at current 2.3 A, as shown in Figs.

15(b) and (c). It has been explained in detail by [10].

However, the normal force fluctuation at current 5 A is

higher than the others two, as shown in Fig. 16(a). As

shown in Figs. 16(b) and (c), the fluctuation on armature

field and the one on no load counteract each other. Then,

the normal force fluctuation at current 2.3 A is the lowest

one. Since the normal force rather than the cogging force

plays a more important role for high vibration and noise

of the machine [19, 20], so, although the thrust force

fluctuation at current 5 A is smaller than the one at

current 2.3 A, the vibration at current 5 A will be more

severe than the one at current 2.3 A.

5. Vibration Prediction and Verification

The electromagnetic forces acting on the inner surface

of the short mover excite the whole mover with corre-

sponding frequency, thus leading to vibration and acoustic

noise. The basic dynamic equation for the vibration

behavior of a machine can be expressed as

 (22)

where [M], [C], and [K] are the mass matrix, the damping

matrix, and the stiffness matrix of the machine, respec-

tively, {F(t)} is the applied equivalent force vectors, {u}

is the nodal displacement vector.

Modal analysis is a dynamic analysis concerned with

natural frequencies and mode shapes of an undamped

structure under free vibration. As a result, (22) becomes

the eigenvalue problem, and it can be expressed as

 (23)

The natural mode shapes are calculated through modal

analysis by solving (23). The mechanical model is developed

by FE method to predict the vibration characteristics of

the LPMV machine. As shown in Fig. 17, the natural

[ ]{ } [ ]{ } [ ]{ } { ( )}M u C u K u F t+ + =�� �

( )2[ ] [ ] { } 0K M uω− =

Fig. 16. (Color online) Normal force. (a) Waveform. (b)

Fluctuation at current 2.3 A. (c) Fluctuation at current 5 A.

Fig. 17. (Color online) Modal shapes. (a) Mode 1. (b) Mode 2.

(c) Mode 3. (d) Mode 4.
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vibration modes of the short mover are similar to an

unrestraint beam, and the yoke mode shapes are sinusoidal

waveforms.

Based on the foregoing analysis, the deformation of the

short mover is predicted by transient structure analysis. In

the transient structural analysis of the mover, only the

normal force is applied on the mover surface to investigate

the mover vibration, because the tangential force contri-

butes to drag the mover at a constant speed. The tangential

force fluctuation contributes to the variation in speed of

mover, it is not include in this paper. The normal force

density calculated from (18) are transformed to equivalent

normal forces acting on the inner surface of the mover by

 (24)

where S is the inner surface area of each PM or each split

tooth. The equivalent normal force vectors distributed

along the inner surface of the mover are shown in Fig. 18.

Figure 19 shows the FE-predicted normal displacement

of the short mover. It illustrates that the dominant vibration

of the LPMV machine is mode 2, which is just the lowest

spatial harmonic order of the normal force density.

Moreover, the vibration at current 5 A is obviously more

violent than the one at current 2.3 A because of the

increase of the 2nd normal force density.

Based on forgoing analysis, since the force fluctuations

on the armature and PM fields have a difference of 180

electrical degrees, the thrust and normal force fluctuations

at different phase currents are different, thus resulting in

different extent vibration. Figures 20 and 21 show the FE-

predicted normal acceleration and the harmonics of the

short mover, respectively. It can be seen that the frequency

of the first peak is about 584 Hz, and the second peak

occurs at the 2629 Hz. The first acceleration peak is the

dominant vibration component. In order to verify the

theoretical analysis, the modal frequencies and the normal

accelerations under different conditions are measured by

an IEPE acceleration sensor, as shown in Fig. 22. It can

be seen that the first and second modes are stimulated by

modal hammering method, and the dominant vibration

( ) ( , )y

S

F t p x t dS= ∫∫

Fig. 18. (Color online) Normal force vectors (red arrows)

applied on the mover surface for the initial position.

Fig. 19. (Color online) Normal displacement on the mover

face. (a) At current 2.3 A. (b) At current 5 A.

Fig. 20. (Color online) FE-predicted normal acceleration on

the mover face.

Fig. 21. (Color online) FE-predicted normal acceleration har-

monics.
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occurs at the second order frequency, that is 584 Hz. The

first mode with frequency 188 Hz maybe stimulated by

the experimental platform or some unbalance factors, such

as the magnetic grating ruler or other mechanical assembly.

The acceleration amplitude at current 2.3 A is larger than

the one on no load. It is because that the lower order

harmonic of normal force density at current 2.3 A is

larger than the one on no load, although the normal force

fluctuation is smaller. It also illustrates that the lower-

order normal force density harmonic with high-amplitude

is the dominant vibration source of the LPMV machine.

Good agreement can be seen among the magnetic force

analysis, the predicted vibration order, and the measured

results. It should be mentioned that the operation at rated

phase current 5 A is very difficult because of the experi-

mental platform. So, this paper only gives the experimental

results operated at 2.3 A and no load to verify the

theoretical analysis.

6. Conclusion

This paper has investigated the normal force and

vibration characteristics of the three-phase LPMV machine.

The flux density has been analyzed by the MMF and the

air-gap surface permeance, and the normal force density

has been calculated by Maxwell Stress Tensor method.

Then, the main vibration modes and the vibration behavior

of the mover have been determined by structural analysis.

Finally, the experimental results have been given for

verification. It can be confirmed that the dominant vibration

mode can be determined from the lowest harmonic of the

normal force density, and the reduction of the lowest-

order normal force density harmonic can mitigate the

machine vibration. This conclusion is similar to the one

of the rotation PM machines, and it is instructive for the

design of a high-precision and low-vibration LPMV

machine.
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