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In the present study, we recapitulated the magnetic field and porous medium effects on the peristaltic mecha-

nism of a Jeffrey fluid model observed between two electrically conducting eccentric annuli. The inner annulus

is assumed to be rigid and to contain constant velocity across the longitudinal direction of the enclosure; the

outer one is considered to be flexible and to experience peristaltic waves travelling down its walls. Moreover, the

magnetic field is examined in the direction normal to the pattern in the presence of a porous medium. The flow,

meanwhile, is incompressible and follows in an unsteady format. The flow’s descriptive equations are reduced

by anticipation of long wave length and small Reynolds number approximations. The resulting governing equa-

tions are then handled using analytical techniques. The achieved expressions for the considerable functions are

manipulated graphically to determine the influences of various appertaining parameters. Finally, the results are

compared with those of previous studies to confirm the validity of the present solutions through tables and

graphs. The graphs indicated that the magnetic field increases the pumping rate but that the porosity reduces

it.
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1. Introduction

The peristaltic mechanism of fluids in three-dimensional

geometries (tubes/ducts) has a special allure among to

researchers. Peristalsis suggests a wave-like phenomenon

that occurs due to involuntary expansion and contraction

of a lissome wall. A large number of applications of

peristaltic flow have been proved in different fields such

as physiology, engineering and medicine. In many surgical

processes for example, it is applied to circulate the blood

in heart-lung machines. Naturally too, this process pro-

pagates to the intestines, stomach and esophagus. Many

scientists and engineers have explored varieties of pumping

machines very similar to roller pumps. The peristaltic

mechanism of a toxic liquid is employed in the nuclear

industry to retrieve penetration of the external environment

[1]. The variable magnetic field acting on the peristaltic

flow of Jeffrey fluid in a non-uniform rectangular duct

having compliant walls has been investigated by Bhatti et

al. [2]. Bhatti et al. [3] have examined the heat and mass

transfer of two-phase flow with electric double-layer effects

induced due to peristaltic propulsion in the presence of a

transverse magnetic field. An extensive literature is

available for analysis of the peristaltic transport of

Newtonian and non-Newtonian fluids in various flow

patterns [4-7]. Reddy et al. [8] have discussed the influence

of lateral walls on the peristaltic flow in a rectangular

duct. And, In order to simplify the problem, they have

measured the results under the implementation of long

wavelength and low Reynolds number. After a thorough

review of the literature, it is found that only a few studies

have analyzed the effect of the eccentricity attribute [9-

11]. In recent years, the peristaltic flow of non-Newtonian

fluids through eccentric cylinders has been investigated

by some researchers. Recently, a mathematical model of

peristaltic transport through eccentric cylinders was

presented by Mekheimer et al. [12], who [13] have also

executed the particulate suspension flow induced by

sinusoidal peristaltic waves through eccentric cylinders

with thread annular. Ellahi et al. [14] presented a series of

solutions for the magnetohydrodynamic peristaltic flow of

a Jeffrey fluid in eccentric cylinders. 
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Keeping in mind the above discussion, the effects of a

magnetic field and porous medium on the peristaltic flow

of an electrically conducting non-Newtonian Jeffrey fluid

has not yet been analyzed across eccentric cylinders. So,

the motive of the present paper was to focus on the

permeability of surrounding walls and MHD on Jeffrey

fluid in the mid space of two eccentric annuli. An

inspiration was the anticipation that this investigation

would be beneficial to many industrial and engineering

procedures. This idea, moreover, would provide a better

solution for determination of the injection intensity and

the fluid flow practice within the syringe. The governing

equations for unsteady and incompressible flow of Jeffrey

fluid are reduced by applying the assumptions of a long

wave length. The simplified form of the equations is

solved by using the series solution. The behavior of the

flow for all of the respective parameters is investigated by

means of graphs of the solutions and important flow

features.

2. Mathematical Formulation of 

the Problem

Here, we examine the effects of a porous medium and

MHD on the peristaltic mechanism of Jeffrey fluid in a

three-dimensional rectangular channel. The sketch of the

flow geometry is arranged such that the tube in the inside

region is rigid with radius δ, and the outer tube experiences

sinusoidal peristaltic waves aligned with its wall. It

should be noted here that the fluid motion is observed to

the centre of the upper cylinder (Fig. 1). Accordingly, the

wall of the inner tube is represented by 

where the parameter ε represents the eccentricity of the

inner tube. The walls are considered to be electrically

conducting and passing in a rectangular channel across a

porous medium.

The radii are suggested by the equations as [12]

, (1)

, (2)

where δ and a are the radii of the inner and outer tubes, b

is the amplitude of the wave, and c is the velocity of wave’s

propagation. The laws of conservation and momentum for

an incompressible non-Newtonian fluid with velocity

vector (v, o, u) are presented as [12]

(3)

(4)

S (5)

where v and u are the radial and normal velocity

components, respectively, p stands for the pressure, μ is

the viscosity, k1 denotes the porous medium permeability,

σ denotes the electric current density, B0 is the magnetic

field exerted normal to the direction of the flow, S

indicates the stress tensor that is given in the subsequent

form [5] 

, (6)

where λ1 is the ratio of relaxation to retardation time, λ2 is

the delay time,  is the shear rate, and the dots represent

the derivatives with time. According to the flow geometry,

we suggest the boundary conditions

u = 0, at r = r2, (7)

u = V, at r = r1, (8)

where V implies the inner cylinder velocity. The dimen-

sionless quantities used in the current investigation can be

stated as

(9)
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Fig. 1. Geometry of the problem.
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is the Reynold's number, δ0 is the wave number, M

provides the MHD contribution parameter, and k is the

porosity parameter. After taking into account the above

parameters, the corresponding flow equations are incorpo-

rated into the consequential form

(10)

(11)

(12)

The dimensionless components of stress are expanded

as 

(13)

Using the constraints of long wavelength and less

Reynolds number, the observing equations (10-12) approach

the following form:

(14)

(15)

. (16)

In the above expression, we have 

Eqs. (14) and (15) suggest that p is independent of r and

θ. The non-dimensional boundary conditions attain the

form

(17)

(18)

3. Solution to the Problem

The solution to Eq. (16) is acquired by using the well-

known perturbation method [15-16]. The deformation

equation for the present problem is suggested as

(19)

where q is the embedding parameter, and the linear

operator is chosen to be  We

consider the subsequent initial guess

(20)

Now we suggest

(21)

Applying the above series to Eq. (19) and equating the

terms of the successive powers of q, we achieve the

following systems:

(22)

(23)

(24)

(25)

Eqs. (20) and (22) provide the solution of the zeroth-

order system, and is described in the relation

(26)

The solution of the first order system is summarized as
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(27)

where

Now for , we set the required solution. So Eq.

(21) implies

where u0 and u1 are evaluated in Eqs. (26) and (27). The

momentary volume flow rate  is written as

(28)

(29)

Now , the mean volume flow rate measured for one

period is given as [12]

(30)

where Q accounts for the average flow per period of the

wave. Now we can execute the expression of pressure

gradient dp/dz by incorporating Eqs. (29) and (30) and

extracting it as

(31)

The non-dimensional form of pressure rise is calculated

as

(32)

4. Outcomes and Explanations

The series and numerical data evaluated above are

discussed in this section with reference to figures and

tables. The present results are also compared with those

already acquired by Ellahi et al. [14]. The graphical

consequences for the data of pumping profile Δp, pressure

gradient dp/dz and velocity component u(r, θ, z, t) are

executed with the alternate values of porosity parameter k

and the magnetic field parameter M. The stream lines

displaying the imaginary flow behavior are sketched for

M and k.

Table 1 has been compiled to clarify the comparison of

the present results with the literature. The comparison of

this study with that of Ellahi et al. [14] is also disclosed

in Fig. 2. The graph for Δp(t) against the flow rate Q

under the variation of the considered parameters is

visualized in Fig. 3. This graph explains the variation of

pressure rise in the pumping parts, which is to say, the

peristaltic pumping (Q > 0, Δp > 0) the augmented pumping
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(Q > 0, Δp < 0), and the reverse pumping (Q < 0, Δp > 0)

The pressure gradient dp/dz with the variation of the

relevant parameters is drawn in Fig. 4. The axial velocity

component u(r, θ, z, t) is plotted in Fig. 5 for various

pertinent quantities. The stream line graphs are shown in

Figs. 6 and 7. 

It is obvious from Table 1 and Fig. 2 that the results

measured in the present analysis are consistent with those

of the study by Ellahi et al. [14] throughout the flow. It is

also confirmed that the contribution of the porous

medium for non-Newtonian Jeffrey fluid results in the

reduction of the velocity in region  but

makes the flow faster in the remaining part. It is clear

from Fig. 3 that the peristaltic pumping region encloses

the interval , the augmented pumping 

, and the retrograde pumping part .

The variation of pressure rise Δp for porosity parameter k

and MHD parameter M is examined in Fig. 3, and it is

apparent from this graph that there is an appendage in

pressure rise with varying M but a decline with the

parameter k in the peristaltic as well as retrograde pumping,

and quite the opposite analysis is measured on the

augmented side. It can be suggested from Fig. 4 that the

pressure gradient increases in the interim area of the

domain but lessens in the broader parts with the increase

in the values of the MHD parameters M while the reverse

attitude is calculated for the porosity parameter k. So, it

can be declared that in the presence of a porous medium,

a large amount of pressure will conserve the flow rate in

the middle of the flow stream rather than the side walls,

which is also obvious physically. It is also shown in this

graph that the pressure gradient gets its depth on the left

and right channels of the cylinder while the peak is

approached at the centre. This implies, significantly, that

fluid can travel without imposing extra pressure in the

two sides of the channel, while in the central part close to

z = 0.5, a large pressure gradient is necessary in order to

stabilize the flow rate. This is in good agreement with the

experimental evidence. It is learned from Fig. 5 that the

velocity component increases with k in 

region whereas it diminishes on the  side,

meanwhile, the totally reverse conclusion is extracted for

the MHD parameter M. Figure 6 displays the pattern of

stream lines along the magnetic field parameter M. From

r 0.2, 0.8( )∈

Q [0, 0.8)∈ Q ∈

0.8, 2[ ] Q [ 1– , 0)∈

0.2 r 0.7< <

0.7 r 1.1≤ ≤

Table 1. Comparison of present velocity data with that

obtained by Ellahi et al. [14].

Ellahi et al. [14] for Present work for Present work for

r V=0.1 k→∞, V=0.1 K=0.1, V=0.1

0.30 0.10000 0.10000 0.00000

0.4 0.63386 0.63386 0.43656

0.5 0.95027 0.95027 0.68894

0.6 1.10889 1.10889 0.90114

0.7 1.13215 1.13215 1.04966

0.8 1.02961 1.02961 1.09172

0.9 0.80562 0.80562 0.97374

1.0 0.46215 0.46215 0.63338

1.1 0.00000 0.00000 0.00000

Fig. 2. Comparison of present velocity distribution with Ellahi

et al. [14] for fixed δ = 0.1, θ = 0.8, φ = 0.1, z = 0, t = 0.2,

M = 1, ε = 0.1, Q = 0.7, λ1 = 0.5.

Fig. 3. Pressure rise Δp for k and M. The other parameters are

ε = 0.1, φ = 0.2, t = 0.2, δ = 0.2, λ1 = 0.5, V = 0.1, θ = 0.8.

Fig. 4. Pressure gradient dp/dz for k and M. The other param-

eters are δ = 0.1, φ = 0.2, t = 0.01, ε = 0.1, Q = 0.6, V = 0.1,

λ1 = 0.5, θ = 0.8. 
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this figure, it is determined that there is an increase in the

number of boluses and that the size changes manually in

the upper half of the domain while the quantity of boluses

remains fixed but the size increases with the increasing

effects of M in the bottom of the flow. Fig. 7 indicates

that the numbers of boluses decrease with different values

of parameter k in upper region but remain consistent in

the lower region while the size expands on both sides of

the flow range.

5. Concluding Remarks

In this paper, the authors have presented the peristaltic

flow of Jeffrey fluid in the presence of a magnetic field

and a porous medium. The governing equations are modeled

under the consideration of some physical limitations. The

analytical and numerical results are found and are dis-

cussed in graphs. The main findings of the above analysis

are made on the basis of graphical results and can be

summarized as follows:

1. The results achieved in this work are consistent with

those of a previous study [14] throughout the flow for

very large values of permeability factor k.

2. The inclusion of a porous medium result in the

reduction of the velocity in the left region of the body but

increases in the remaining parts though the magnetic field

Fig. 5. Profile of axial velocity u for k and M. The other

parameters are δ = 0.2, φ = 0.2, t = 0.2, z = 0 ε = 0.1, Q = 0.1,

V = 0.1, λ1 = 0.5, θ = 0.8. 

Fig. 6. Stream lines against M. (a) for M = 0.1, (b) for M = 0.3, (c) for M = 0.5. The fixed quantities are ε = 0.4, V = 0.1, t = 0.2,

θ = 0.8, φ = 0.05, k = 0.9, Q = 0.6, δ = 0.05, λ1 = 0.5.

Fig. 7. Stream lines against k. (a) for k = 0.8, (b) for k = 0.9, (c) for k = 1. The fixed quantities are ε = 0.4, V = 0.1, t = 0.2, θ = 0.8,

φ = 0.05, Q = 0.6, M = 0.3, δ = 0.05,λ1 = 0.5. 
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suggests that the outcomes are contrary to the magnetic

field.

3. The presence of a magnetic field increases the

peristaltic pumping rate but the porous medium decreases

it.

4. The pressure gradient increases in the central part but

decreases at the corners with the increase in the MHD

parameters, whereas the permeability of the medium

reveals the opposite behavior.
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