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In this paper, the unsteady of magnetohydrodynamics (MHD) second grade fluid in a porous medium due to

non–coaxial rotation is investigated. The effects of heat and mass transfers (double diffusion) through an oscil-

lating disk are considered. The non–dimensional governing momentum, energy and mass equations are

obtained by using the suitable non–dimensional variables. The Laplace transform method is used to obtain the

exact solutions of non–dimensional velocity, temperature and concentration profiles. The expressions of skin

friction, Nusselt number and Sherwood number are also presented. The numerical result for all fluid flow pro-

files are plotted in graphs for the different parameters studied. The results also show that, velocity for present

solution (with heat and mass transfers) has a significant impact on the velocity profiles in non-coaxial rotation

due to exhibits high thermal diffusivity and thermal conductivity. The obtained exact solutions are found to be

identical to the Guria [10]. It is worth mentioning that, the exact solutions are in excellent agreement with the

numerical solutions of Inverse Laplace transform obtained by Gaver-Stehfest algorithm.
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1. Introduction

Magnetohydrodynamic (MHD) is the study of the

dynamic of a conducting fluid in the presence of magnetic

field. MHD is of great important in many areas of geo-

physics, technology, astrophysics and fluid engineering.

For example, MHD power generation, MHD pumps,

aerodynamic heating, application in the flow of liquid

metals and alloys, purification of crude oil and fluid drop-

lets, petroleum industry, cardiology and also application

in flow of mercury amalgams. The investigation of the

MHD rotation flow has gained extensive attention of

researches due to the wide range of application in fluid

engineering and geophysics astrophysics. A force called

Coriolis force is generated due to the rotation and it has a

significant effect on the MHD flow. A number of researchers

have considered the viscous incompressible flow due to

non-coaxial rotations of a disk and a fluid at infinity. The

possibility of an exact solution for the flow was implied

by Berker [1]. Coirier [2] studied the flow by considering

that the disk and the fluid at infinity rotate non-coaxially

at a slightly different angular velocity. Erdogan [3] extend-

ed the work of Coirier [2] for the case of a porous disk.

The investigation of the MHD flow due to eccentric

rotations of a porous disk and a fluid at infinity has been

done by Murthy and Ram [4]. A simple fluid flow in an

orthogonal rheometer has been studied by Rajagopal [5].

Kasiviswanathan and Rao [6] presented an exact solution

for the unsteady Newtonian fluid flow due to non-coaxial

rotations of a porous disk oscillating in its own plane and

the fluid at infinity. Recently, by mean of Laplace trans-

form methods, an exact solution of the unsteady MHD

flow due to non-coaxial rotations of a porous disk and a

fluid at infinity on taking Hall currents into account has

been obtained by Guria [7]. Asghar [8] studied the effect

of slip condition on the flow due to eccentric rotations of

fluid at infinity and a porous disk. Hayat [9] examined the

effect of Hall current on the MHD flow due to non-

coaxial rotations of an oscillating porous disk and a fluid

at infinity. Guria [10] extended the work done by Guria

[7] by considering the effect of slip condition on the

porous disk. Due to the great important of flows through

porous medium in petroleum engineering and chemical

engineering, Maji [11] studied the unsteady MHD flow
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due to non-coaxial rotations of a porous disk and a fluid

at infinity through a porous medium. They found that the

fluid flow takes more time to reach the steady state in

case of porosity than the case of no porosity of the medium.

Further, Mohamad [12] investigated the unsteady free

convection flow of Newtonian fluid due to non-coaxial

rotation of an oscillating vertical plate with constant wall

temperature and a fluid at infinity. They have considered

the heat transfer in the Newtonian fluid and the study is

important in many areas, such as automatic control systems,

cooling turbine blade and in designing thermal syphon

tubes. Recently, the combined effects of heat and mass

transfer on mixed convection flow of an incompressible

viscous fluid through an oscillating infinite vertical disk

with eccentric rotation and a fluid at infinity has been

studied by Mohamad [13].

In all the above studies, there is a lacuna that non-

Newtonian fluid was not considered by the authors. Non-

Newtonian fluid is a type of fluid that does not obey

Newton’s law of viscosity. The fluid may have variable

viscosity at a constant temperature and also the viscosity

is dependent on the applied force. Syrupy mixture of

corn-starch and water, quicksand, slurries, pastes, gels and

polymer are same examples of the non-Newtonian fluid.

Coleman and Noll [14] had proposed a type of non-

Newtonian fluid called second grade fluid. It is also one

kind of viscoelastic fluid. Generally, it can be found in

polymer fluid where the fluid exhibits both the viscous

and elastic characteristics. In the last few years, a lot of

work has been done on second grade fluid flow and the

interesting works can be found in [15-23]. Few researchers

have intended to study the non-coaxial rotation in the

second grade fluid due to the great important in industrial

applications. Hayat [24] considered the flow of a second

grade fluid bounded by a non-torsional oscillating porous

disk which rotates non-coaxially with a fluid at infinity.

Further, Hayat [25] analytically studied the unsteady

MHD second grade fluid due to eccentric rotation of a

porous oscillating disk and a fluid at infinity. The exact

solutions of unsteady mixed convection flow on MHD

non-coaxial rotation of second grade fluid in a porous

medium has been determined by Mohamad [26] by mean

of Laplace transform method. 

In mathematical analysis, the problems of Newtonian

fluid are simpler compare to non-Newtonian fluid pro-

blems. It is due to the fact that the mathematical systems

of Newtonian fluid are not as much complicated and their

solutions are convenient. The problems of non-Newtonian

fluid on the other hand are very complicated due to the

additional non-Newtonian term in the constitutive equation.

This difficulty further increases when the non-Newtonian

fluid is incorporated in other physical phenomenon such

as heat and mass transfer or known as double diffusion.

To the best of the author’s knowledge, no attempt has

been made to discuss the MHD second grade fluid flow

due to non-coaxial rotations of fluid at infinity and a disk

with the effect of heat and mass transfer in a porous

medium. In the present communication, such an attempt

was given. The combined effects of double diffusion and

porosity on the MHD second grade fluid flow were

discussed. Laplace transform method was applied to

obtain an exact solution of the governing equations. The

influence of second grade parameter, magnetic field, heat

and mass transfer and porosity on the flow were

graphically presented and analysed.

2. Mathematical Modelling

Consider unsteady incompressible electrically conducting

second grade fluid which embedded in a porous medium

and the heat transfer occurs due to free convection as

presented in Fig. 1. The x-axis is taken in upward direc-

tion along the plate and the z-axis is taken normal to the

plane of the plate. The axes of rotation for both plate and

fluid are assumed to be in the plane x = 0. A uniform

transverse magnetic field of strength B0 is applied parallel

to the axis of rotation. It is assumed that induced magnetic

field, the external electric field and the electric field due

to polarization of charges are negligible. Initially, at t = 0

the disk and fluid at infinity are rotating about z’-axis in

the common angular velocity Ω with constant temperature

T∞ and constant concentration C∞. After time t > 0, the

disk suddenly starts to oscillate ω in its own plan and the

fluid rotates about z-axis with uniform angular velocity Ω

while the fluid at infinity continues to rotate about z’-axis

with the same angular velocity. Meanwhile, the temperature

Fig. 1. Schematic diagram of MHD non-coaxial rotation past

an oscillating vertical plate in a porous medium with heat and

mass transfer effects.
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of the disk is raised to constant temperature Tw and

constant temperature Cw. Here, the distance between axes

of rotation is equal to . Therefore, the initial and the

boundary conditions can be written in the following form

[9, 11-13]

 (1)

where u, v and w are respectively the velocity compo-

nents along x, y and z-directions. The initial and boundary

conditions given by Eq. (1) suggest that the components

u, v and w of the velocity can be written in the following

form [9, 11-13]

  (2)

where f(z,t), g(z,t) and h(z,t) are unknown functions. The

unsteady motion of the incompressible second grade fluid

subjected to Eq. (2) in Cartesian coordinates system is

governed by the continuity [24, 25], Navier-Stokes [24,

25] and body force [12, 13, 24, 25] equations can be

written a

 (3)

From equation (3), it has the functions of temperature

T(z,t) and concentration C(z,t) on the right hand side .

Hence, introduced the energy and mass equations as

follow [12, 12, 20, 21]

 (4)

and

 (5)

where υ is the kinematic viscosity, ϕ is the porosity, 1 is

material moduli commonly referred to as the normal

stress moduli,  is the dynamic viscosity, k1 is the perme-

ability of the porous medium, F = F(z,t) = f(z,t) + ig(z,t)

is a complex velocity [12, 13, 20, 21, 24-26], f(z,t) is a

primary velocity, i is an unit vector in the vertical flow

direction, g(z,t) is a secondary velocity,  is the density of

fluid,  is an electrical conductivity, gx is an acceleration

due to the gravity, T is the volumetric coefficient of

thermal expansion for temperature, C is the volumetric

coefficient of mass transfer, k is the thermal conductivity,

Cp is the specific heat capacity and D is the mass

diffusivity. The conditions of Eq. (1) subjected to Eq. (2)

and complex velocity are reduced as

(6)

Then, conditions for energy and mass equation are

introduced as

 (7)

 (8)

where U is the amplitude of the plate oscillations, H(t) is

a Heaviside function, ω is a frequency of oscillation,

sin(ωt) and cos(ωt) are trigonometric functions for sine

and cosine oscillation cases. Here, the Eqs. (3) until (8)

are dimensional equations which are involved SI unit.

Therefore, in order to eliminate SI unit and simply these

dimensional equations, we introduced the non-dimensional

variables as follow

 (9)

to obtain the non-dimensional equations. Then, substitute

the non-dimensional variables (9) into Eqs. (3) until (8),

obtained (dropping out the * notation):

 (10)

  (11)

  (12)
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 (13)

  (14)

  (15)

From this non-dimensional process will be obtained the

important parameters such as 

  (16)

where  is the second grade parameter, K is the porosity

parameter, M is the magnetic parameter, Gr is the Grashof

Number, Gm is the modified Grashof Number, Pr is the

Prandtl Number, Sc is the Schmidt Number and U0 is the

non-dimensional parameter of amplitude of the plate

oscillations. As mentioned in introduction, the solution of

this problem will be obtained by using Laplace transform

method. Then, apply this Laplace transform to Eqs. (10)

until (15) subjected to initial conditions (13) until (15),

obtained transform of momentum, energy and mass equations

as followed

 (17)

 (18)

 (19)

and transform of boundary condition are
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  (21)

  (22)

where  and q is the

domain of Laplace transformation parameter. In order to

solve Eq. (17), first we need to obtain the solution of Eqs.

(18) and (19) by using the homogenous characteristics

equation subjected the boundary conditions (21) and (22).

Here, it can be written as

 (23)

and

  (24)

After that, substitute Eqs. (23) and (24) into Eq. (17),

we obtained

  (25)

and solve this Eq. (25) by using non-homogenous charac-

teristics equation where can be written as
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which is
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and
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boundary condition (20) need to be used subjected to Eqs.

(26), (28), (29) and obtained as

 (30)

0

0

( ,0) 0,   0,

(0, ) 1 ( )cos( ) or 

(0, ) 1 sin( );   0,

( , ) 0;   0

F z z

F t U H t t

F t U t t

F t t





  

  

    

   

( ,0) 0;    0,

(0, ) 1;    0,

( , ) 0;    0,

T z z

T t t

T t t

  

  

   

( ,0) 0;   0,

(0, ) 1;    0,

( , ) 0;   0.

C z z

C t t

C t t

  

  

   

2

7 8 1

2

01

2 2

0

1
1 ,   ,   1 ,   

1
,   ,   ,   

( ) ( )
,   ,   

Pr ,   ,   .

x T w x C w

p

n n i M m i
K K

B
M

K k

g T T g C C
Gr Gm

c U
Sc U

k D




 


 

 

 

 

      


  

 

 
 

 

  


� �

�

2

7 8

2

1 1 1

,

n q nd F Gr Gm
F T C

q m m q m qdz   

 
    

   

2

2
Pr 0,

d T
q T

dz
 

2

2
0,

d C
qScC

dz
 

0 02 2 2 2

1 1
(0, )  or (0, ) , 

                                       ( , ) 0,

q
F q U F q U

q qq q

F q



 

     

 

 

1
(0, ) ,   ( , ) 0,C q C q

q
  

1
(0, ) ,   ( , ) 0,T q T q

q
  

( , ),  ( , ),  ( , ),F F z q T T z q C C z q  

1
exp( Pr )T z q

q
 

1
exp( ).C z qSc

q
 

( )

( )

2

7 8

2

1 1

1

1
exp Pr

1
exp ,

n q nd F Gr
F z q

q m m q qdz

Gm
z qSc

m q q

 



 
     

  

  


1 2
( , ) ( , ) ( , ) ( , )h p pF z q F z q F z q F z q  

10

1 9

4

10

2 9

4

( , ) exp

exp ,

h

q n
F z q c z n

q m

q n
c z n

q m

 
    

 
    

1 2

12 13

1
( , ) exp( Pr )

Pr [ ]
p

Gr
F z q z q

q q n q n

   

 

2 2

1 2

1
( , ) exp( ).

[ ]
p

Gm
F z q z qSc

Sc q q N q N

   

 

10

0 92 2

4

10

92

412 13

10

92

41 2

1
( , ) exp

1
exp exp( Pr )

Pr [ ]

1
exp exp( Pr ) .

[ ]

q nq
F z q U z n

q q mq

q nGr
z n z q

q mq q n q n

q nGm
z n z q

Sc q mq q N q N







   
          

  
            

  
           



Journal of Magnetics, Vol. 24, No. 3, September 2019  383 

 (31)

where Eqs. (30) and (31) are the functions of cosine and

sine oscillation cases. Then the solution of the differential

equation as a function of t will be found by taking inverse

Laplace transform of Eqs. (23), (24), (30) and (31). Here,

we received as
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Fig. 2. (Color online) Comparison of velocity profile in Eqs.

(34-35) with Eq. (32) of Guria [10] for (a) cosine solution and

(b) sine solution.

Table 1. Comparison of the primary velocity results f(z,t) (34)

for cosine case.

z
Exact 

solution

Numerical solution 

(Ref. [27, 28])
|Error|

0 0.500 0.499 0.001

1 1.297 1.296 0.001

2 0.717 0.717 0.000

3 0.276 0.276 0.000

4 0.085 0.084 0.001

aRef. [27, 28]
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limiting cases. In addition, the accuracy of the results is

also verified by comparing with numerical results as

shown in Tables 1 to 4. Eqs. (34-35) have been solved

numerically by using Gaver–Stehfest algorithm [27, 28]

for inverse Laplace transform. These tables showed that

results of primary, f(z,t) and secondary g(z,t) velocities for

the cosine and sine cases from exact (Eqs. (34-35)) and

numerical solutions are found to be in good agreement.

4. Results and Discussion

This chapter has discussed the formulation of the exact

solutions for unsteady MHD free convection flow of a

non–coaxial rotation second grade fluid in porous medium

of Eqs. (34, 35) in double diffusion, by using the Laplace

transform method. Accordingly, the problems over an

oscillating disk for the case of sine and cosine have been

discussed. Graphical results have also been prepared to

Table 2. Comparison of the comparison velocity results g(z,t)

(34) for cosine case.

z
Exact 

solution

Numerical solution 

(Ref. [27, 28])
|Error|

0 0.500 0.499 0.001

1 0.272 0.271 0.001

2 0.303 0.302 0.001

3 0.194 0.193 0.001

4 0.096 0.096 0.000

aRef. [27, 28]

Table 3. Comparison of the primary velocity results f(z,t) (35)

for sine case.

z
Exact 

solution

Numerical solution 

(Ref. [27, 28])
|Error|

0 1.598 1.598 0.000

1 1.544 1.544 0.000

2 0.805 0.805 0.000

3 0.324 0.324 0.000

4 0.112 0.112 0.000

aRef. [27, 28]

Table 4. Comparison of the secondary velocity results g(z,t)

(35) for sine case.

z
Exact 

solution

Numerical solution 

(Ref. [27,28])
|Error|

0 0.000 0.000 0.000

1 1.098 1.098 0.000

2 0.164 0.164 0.000

3 0118 0118 0.000

4 0.063 0.063 0.000

Fig. 3. (Color online) Velocity profiles for different values of

 with Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62, M = 0.20,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 4. (Color online) Velocity profiles for different values of

Gr with  = 3.00, Gm = 5.00, Pr = 1.00, Sc = 0.62, M = 0.20,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.
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support the exact solutions for the effects of , Gr, Gm,

Pr, Sc, M, K, t, U0 and ωt as shown in Figs. 3 to 14. The

velocity profiles have been divided into two parts, which

are primary f(z,t) and secondary g(z,t) velocities. Figure 3

illustrates the effects of the second grade parameter  on

the primary velocity and secondary velocity, respectively.

These figures show that the primary velocity initially

decreases and then increases when  is increased. Similar

behaviour has been observed for the relationship between

the secondary velocity and second grade parameter. This

is due to the properties of second grade fluid as it possesses

viscosity and elastic behavior. The results of velocity

profiles for the influence of Gr and Gm are shown in

Figs. 4 to 5 respectively. The velocity profiles for primary

velocity or secondary velocity increase when the values

of Gr and Gm are increased. This is because, larger

values of Gr and Gm lead to larger buoyancy force;

consequently accelerating the movement of mass particles

in the fluid flow.

Figure 6 shows the behavior of the second grade fluid

flows due to the influence of the Prandtl number Pr. Here,

four physical values of the Pr = 1.00 (electrolyte), Pr =

5.00 (light organic fluid), Pr = 7.20 (sea water) and Pr =

50 (oil) have been chosen. It can be clearly seen from

Fig. 5. (Color online) Velocity profiles for different values of

Gm with  = 3.00, Gr = 5.00, Pr = 1.00, Sc = 0.62, M = 0.20,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 6. (Color online) Velocity profiles for different values of

Pr with  = 3.00, Gr = 5.00, Gm = 5.00, Sc = 0.62, M = 0.20,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 7. (Color online) Velocity profiles for different values of

Sc with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, M = 0.20,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.
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these figures that, velocity decreases when the values of

Pr is increased. Similar phenomenon is observed for the

effect of Schmidt number Sc on the velocity distribution

in the fluid (see Fig. 6). In this case, four different values

of Schmidt number Sc = 0.22; 0.62; 0.78; and 0.94 have

been chosen; each physically corresponding to hydrogen,

water vapour, ammonia, and carbon dioxide. Viscous

force that acts on the fluid flow increases when the values

of Pr and Sc are increased hence reducing the movement

of the second grade fluid because more energy is used

against the viscous force. Noted that, the same behavior

of Pr and Sc is shown in temperature profile (Fig. 13) and

concentration profile (Fig. 14). Figure 8 presents the

effects of the magnetic parameter M on the velocity pro-

file. Either the primary velocity or the secondary velocity

is reduced as the magnetic parameter is increased. In this

case, the Lorentz force, which acts in opposite direction

of the fluid flows, increases when the magnetic parameter

is increased. Therefore, more energy is needed by the

fluid to resist the frictional force (Lorentz force), thus

reducing its velocity. 

The drag force is reduced when porosity parameter K is

reduced, thus the velocity profiles increases when the

porosity parameter is increased. This is due to increase

Fig. 8. (Color online) Velocity profiles for different values of

M with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62,

K = 2.00, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 9. (Color online) Velocity profiles for different values of

K with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62,

M = 0.20, t = 1.00, U0 = 3.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 10. (Color online) Velocity profiles for different values of

t with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62, M

= 0.20, K = 2.00, U0 = 3.00 and ω = π/3 for (a) Primary veloc-

ity and (b) Secondary velocity.
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the size of the hole in porous medium that passing through

the fluid flow. This behavior of the velocity profile due to

the porosity parameter is presented in Fig. 9. The effects

of time t and parameter of amplitude of the plate

oscillations U0 on velocity distribution are shown in Figs.

10 to 11, respectively. It can be seen from these figures

that the velocity has similar behavior when parameters t

and U0 are increased. Both the primary velocity and

secondary velocity increase when the parameters are

increased. Temperature and concentration distributions for

the effect of t are shown in Figs. 13 to 14, respectively.

Similar behavior as velocity is shown in these two

profiles when parameter t is increased. The influence of

phase plane angle ωt on velocity profile is shown in Fig.

12. Here, the velocity decreases when the value of ωt is

increased for cosine. However, opposite phenomena is

observed for sine. This is due to the physical behavior of

the cosine function and sine function. Furthermore, the

boundary condition is satisfied by the obtained solution as

seen in these figures. Besides that, in terms of percentage,

the following results based on Figs. 3, 4, 5, 6, 7, 8, 9, 10,

11 and 12 are obtained as

1) When  varies from 0.2 to 0.8, the decrement for

velocity of second grade fluid is 20.50 % (primary)

and 5.50 % (secondary) then increment about 5.00

Fig. 11. (Color online) Velocity profiles for different values of

U0 with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62,

M = 0.20, K = 2.00, t = 1.00 and ω = π/3 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 12. (Color online) Velocity profiles for different values of

ωt with  = 3.00, Gr = 5.00, Gm = 5.00, Pr = 1.00, Sc = 0.62,

M = 0.20, K = 2.00, t = 1.00 and U0 = 3.00 for (a) Primary

velocity and (b) Secondary velocity.

Fig. 13. (Color online) Temperature profiles for different val-

ues of (a) Pr with t = 1.00 and (b) t with Pr = 1.00.
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% (primary) and 6.50 % (secondary) for cosine

respectively.

2) When  varies from 0.2 to 0.8, the decrement for

velocity of second grade fluid is 13.75 % (primary)

and 6.50 % (secondary) then increment about 5.00

% (primary) and 1.00 % (secondary) for sine respec-

tively.

3) When Gr varies from 0 to 8.5, the increment for

velocity of second grade fluid is 20.15 % (primary)

and 2.60 % (secondary) for cosine whereas 17.85 %

(primary) and 2.65 % (secondary) for sine, respec-

tively.

4) When Gm varies from 0 to 8.5, the increment for

velocity of second grade fluid is 73.05 % (primary)

and 15.85 % (secondary) for cosine whereas 38.90

% (primary) and 15.60 % (secondary) for sine,

respectively.

5) When Pr varies from 1.0 to 50, the decrement for

velocity of second grade fluid is 37.55 % (primary)

and 7.25 % (secondary) for cosine whereas 28.90 %

(primary) and 7.10 % (secondary) for sine, respec-

tively.

6) When Sc varies from 0.22 to 0.94, the decrement for

velocity of second grade fluid is 4.80 % (primary)

and 1.6 % (secondary) for cosine whereas 2.25 %

(primary) and 1.4 % (secondary) for sine, respec-

tively.

7) When M varies from 0 to 0.8, the decrement for

velocity of second grade fluid is 10.95 % (primary)

and 5.15 % (secondary) for cosine whereas 5.95 %

(primary) and 2.50 % (secondary) for sine, respec-

tively.

8) When K varies from 1 to 12, the increment for

velocity of second grade fluid is 20.15 % (primary)

and 10.40 % (secondary) for cosine whereas 12.15

% (primary) and 5.65 % (secondary) for sine, respec-

tively.

9) When t varies from 1.0 to 2.5, the increment for

velocity of second grade fluid is 50.00 % (primary)

and 51.00 % (secondary) for cosine whereas 77.50

% (primary) and 22.50 % (secondary) for sine, respec-

tively.

10) When U0 varies from 2 to 5, the increment for

velocity of second grade fluid is 53.55 % (primary)

and 18.10 % (secondary) for cosine whereas 98.65

% (primary) and 11.65 % (secondary) for sine,

respectively.

11) When ωt varies from 0 to /2, the decrement for

velocity of second grade fluid is 57.45 % (primary)

and 8.55 % (secondary) for cosine whereas increment

about 40.55 % (primary) and 8.70 % (secondary)

for sine, respectively.

Thus, it can be said that Gm, t, U0 and ωt cause a

significant impact on the velocity profiles for double

diffusion of second grade fluid in non-coaxial rotation.

For parameter Gm, physically, mass is particle that transfers

heat energy from one place to another place. Therefore,

mass acts as a medium to transfer heat, thus the concent-

ration of fluid increases due to the increase of the amount

Fig. 14. (Color online) Concentration profiles for different val-

ues of (a) Sc with t = 1.00 and (b) t with Sc = 0.60.

Table 5. Variation of Nusselt number Nu (39) for different

parameters t and Pr.

t Pr Nu

1.00 6.20 1.405

2.00 6.20 0.993

1.00 7.20 1.514

Table 6. Variation of Sherwood number Sh (40) for different

parameters t and Sc.

t Sc Sh

1.00 0.60 0.437

2.00 0.60 0.309

1.00 0.96 0.553
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of mass in fluid flow. Then, during the change of time,

the flow gets energy from an external source. This external

source is produced by a buoyancy force that will increase

the velocity when time is increased. Lastly, parameters U0

and ωt are the forced convection of boundary condition

that enhances the movement of fluid flow and increase

the velocity profiles.

Results for Nusselt (39) and Sherwood (40) numbers

are presented in Tables 5 to 6. It can be seen that, the

behaviors of parameters for Nusselt and Sherwood number

are always opposite to that of velocity profiles. Finally,the

numerical values of skin friction (43-44) are shown in

Tables 7 to 8. In all these tables, each of the parameters

has been compared with the first row of corresponding

table. The bold number in each table shows the variation

of that parameter. It is found that the behavior of skin

friction for each parameter shows a quite opposite effect

to the velocity of the fluid. For example, when Gr

increases, the skin friction decreases, whereas the velocity

increases, as discussed previously.

5. Conclusion

An exact solution for unsteady free convection flow of

MHD second fluid due to non-coaxial rotation over an

oscillating vertical disk with isothermal temperature and

constant mass diffusion is obtained by using the Laplace

transform method. Effects of various embedded para-

meters on velocity are studied graphically in various

plots. Results of Nusselt number, Sherwood number and

skin friction are computed in different tables. The disk

and fluid are rotating with uniform angular velocity which

is equal to 1 in the present computations. The following

main results are concluded from this study:

1) Both primary and secondary velocities increase with

increasing Gr, Gm, K, t, U0 and ωt (sine).

2) Both primary and secondary velocities decrease with

increasing M, Pr, Sc and ωt (cosine).

3) Both temperature and concentration profiles increase

with increasing t.

4) Both temperature and concentration profiles decrease

with increasing Pr and Sc.

Table 7. Variation of skin friction (41) for different parameters in primary and secondary velocities.

t Pr Gr ω U0 M K Gm Sc  Primary Secondary

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -5.503 -1.254

1.50 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -8.123 -1.449

1.00 7.20 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -5.131 -1.212

1.00 5.00 8.50 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -6.665 -1.383

1.00 5.00 5.00 π/2 3.00 0.20 2.00 5.00 0.62 0.20 -8.062 -0.953

1.00 5.00 5.00 π/3 4.00 0.20 2.00 5.00 0.62 0.20 -5.523 -1.536

1.00 5.00 5.00 π/3 3.00 0.40 2.00 5.00 0.62 0.20 -5.394 -1.202

1.00 5.00 5.00 π/3 3.00 0.20 5.00 5.00 0.62 0.20 -5.791 -1.428

1.00 5.00 5.00 π/3 3.00 0.20 2.00 8.50 0.62 0.20 -7.486 -1.671

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.94 0.20 -5.277 -1.146

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.40 -6.014 -1.295

Table 8. Variation of skin friction (42) for different parameters in primary and secondary velocities.

t Pr Gr ω U0 M K Gm Sc  Primary Secondary

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -2.019 -1.079

1.50 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -3.404 -1.959

1.00 7.20 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -1.828 -1.038

1.00 5.00 8.50 π/3 3.00 0.20 2.00 5.00 0.62 0.20 -3.181 -1.208

1.00 5.00 5.00 π/2 3.00 0.20 2.00 5.00 0.62 0.20 -2.421 -1.281

1.00 5.00 5.00 π/3 4.00 0.20 2.00 5.00 0.62 0.20 -0.877 -1.304

1.00 5.00 5.00 π/3 3.00 0.40 2.00 5.00 0.62 0.20 -1.892 -1.046

1.00 5.00 5.00 π/3 3.00 0.20 5.00 5.00 0.62 0.20 -2.449 -1.215

1.00 5.00 5.00 π/3 3.00 0.20 2.00 8.50 0.62 0.20 -4.001 -1.497

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.94 0.20 -1.793 -0.971

1.00 5.00 5.00 π/3 3.00 0.20 2.00 5.00 0.62 0.40 -1.915 -1.039
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5) Skin friction increases with increasing values of M,

Pr, Sc and ωt (cosine) whereas it decreases with

increasing values of Gr, Gm, K, t, U0 and ωt (sine).

6) In limiting sense for validation, the present results

are good agreement with published result by Guria

[10] and numerical Stehfest-Algorithm.
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