
Journal of Magnetics 24(3), 408-412 (2019) https://doi.org/10.4283/JMAG.2019.24.3.408

© 2019 Journal of Magnetics

Most Probable Failure Point Update Method for Accurate

First-Order Reliability-Based Electromagnetic Designs

Byungsu Kang1, Jaegyeong Mun1, Jongsu Lim1, K. K. Choi2, and Dong-Hun Kim1*

1Dept. of Electrical Eng., Kyungpook National Univ., Daegu 41566, Republic of Korea
2Dept. of Mechanical and Industrial Eng., Univ. of Iowa, Iowa City, IA 52242-1527, USA

(Received 22 April 2019, Received in final form 26 August 2019, Accepted 29 August 2019)

A most probable failure point update method is proposed to obtain an accurate reliability-based design of elec-

tromagnetic devices or systems in the presence of uncertainties. The first-order reliability method has been

recently adopted to solve electromagnetic design problems. However, its result could be very erroneous espe-

cially for nonlinear or multi-dimensional performance functions. To overcome the drawback, a three-step com-

putational procedure is additionally executed to ensure prescribed design feasibility at an optimum obtained

from the conventional first-order reliability method: failure rate calculation, reliability index update, and most

probable point update. A mathematical example and a blushless DC motor design problem are provided to

demonstrate numerical accuracy of the proposed method by comparison with the conventional method.
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1. Introduction

In recent years, one of probabilistic design methods,

called reliability-based design optimization (RBDO), has

drawn engineer’s attention in our community because it

can systematically incorporate uncertainties into an early

design stage. The RBDO formulation involves an objective

function as deterministic optimization, and also contains

probabilistic constraints for taking into account the prob-

ability of the satisfaction/failure of constraint functions.

Thus, accurate reliability assessment of performance func-

tions concerned in constraint conditions is an essential

step in the RBDO process. Up to date, various attempts to

quantitatively predict the probability of failure of a

performance function have been made in electromagnetic

(EM) field analysis and design: first-order reliability

method (FORM), moment method, Monte Carlo simulation

(MCS) and so on [1-9].

Among them, FORM has been popularly used to

evaluate the probability failure rate of an EM performance

function because of its simple and efficient implementa-

tion [2-4]. In FORM, design random variables are first

transformed into the independent and standard normal

probability distributions. Then, the performance function

is approximated by the first-order Taylor series, and its

failure rate is computed by means of a most probable

failure point (MPP). According to the MPP search algorithm,

there are two different approaches: reliability index ap-

proach (RIA) and performance measure approach (PMA).

It has been revealed that the FORM-based methods could

be very erroneous if the performance function are highly

nonlinear [5-7]. That is because FORM approximates the

performance function using a liner function, and so it

cannot reflect the complexity of nonlinear or high dimen-

sional functions. 

As an effort to alleviate the difficulty in the FORM-

based methods, the authors proposed a hybrid reliability

analysis method for the failure rate calculation of non-

linear or multi-dimensional EM performance functions

[8]. Therein, the univariate dimension reduction method

(DRM) is incorporated with RIA in order to enhance

numerical accuracy of RIA. Through test problems, it has

been shown that the method can estimate the probability

of failure of a performance function more accurately than

RIA and more efficiently than MCS.

In this paper, a wealth of information not used in [8] is

exploited to improve numerical accuracy of a solution of

the conventional FROM-based RBDO. For the purpose of

doing this, a so-called MPP-based DRM is newly used for

enhanced RBDO design as well as accurate reliability
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analysis. A three-step computational procedure is addi-

tionally carried out to guarantee prescribed design feasibility

at an optimum obtained from the PMA-based RBDO

method: failure rate calculation, reliability index update,

and most probable point update. Through testing a

mathematical example and a brushless DC motor design

problem, numerical accuracy of the proposed method is

examined by comparison with the conventional PMA-

based RBDO method.

2. Three-Step Procedure for 
Improved RBDO Designs

In general, a probabilistic constraint of the performance

function g is expressed by 

 (1)

In (1), Pf (·) is the probability of failure for the

infeasible condition (g > 0), x is a design random vector

in X-space, and fx(x) is the joint probability density

function of all random variables in n dimensional space.

The symbol  is the target probability of failure of g,

Ф(·) is the standard normal cumulative distribution

function, and βt is the target reliability index. For efficient

and accurate failure rate computation of (1), the PMA-

based reliability analysis is first conducted to find out a

MPP in a standard normal space (U-space), and then the

univariate DRM is executed at the MPP. In addition, the

information generated from such the MPP-based DRM

can be used for a more improved next iterative design at

the PMA-based RBDO optimum.

2.1. Failure Rate Calculation

To handle the multiple integration in (1), PMA adopts

the first-order Taylor series to approximate g [9]. The

random variable vector x is transformed to the standard

normal random variable vector u. That is, g(x) in X-space

is mapped onto g(T(x)) ≡ g(u) in U-space. In PMA, the

probabilistic constraint condition of (1) can be dissolved

into the inequality equation of (2). 

 (2)

where x
* denotes an inverse MPP in X-space corre-

sponding to the inverse transformation of u
* in U-space.

To seek a MPP u
*, the following optimization problem

must be solved.

 (3)

As seen in (3), PMA does not calculate the probability

failure rate directly. Instead, it judges whether or not a

current design point satisfies probabilistic constraint for a

prescribed target failure probability.

To accurately evaluate the probability of failure at MPP

u
*, the univariate DRM is additionally conducted. The

performance function g is expressed by the sum of one-

dimensional ones. To relieve such the approximation

error, a rotated standard normal V-space is newly intro-

duced as seen in Fig. 1, where u* is defined by v* = [0, L,

0, βt]
T. The n-dimensional performance function g(u) in

U-space is additively decomposed into one-dimension

ones at the MPP v* in V-space as [7, 8]

(4)

where  is the univariate approximation function, gi(vi) =

g(0, ···, 0, vi , 0, ···, βt) is a function of only vi. Due to the

rotational transformation of the coordinates, the nth

univariate component gn(vn) can be linearly approximated

along vn-axis as 

 (5)

where  is zero because of = βt, and b1 denotes

the partial derivative of . 

Using the linear assumption of (4) and (5), the prob-

ability of failure in (2) can be rewritten as 

 (6)
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Fig. 1. (Color online) Illustration of DRM-based MPP for a

concave performance function.
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where E denotes the expectation operator. Applying the

moment-based integration rule (MBIR) to (6), a DRM-

based failure rate  of g can be generalized as follows

[8].

(7)

where m is the number of weights and quadrature points,

and the symbols,  and , mean the jth weight factor

and quadrature point for the ith random variable vi,

respectively. According to the MBIR theory, m quadrature

points and weights yield a degree of precision of 2m1.

2.2. Reliability Index Update

The FORM-based reliability assessment like (3) inherently

includes a significant error due to the linear approximation

of the original limit state function (g(u) = 0), which is

highly nonlinear as seen in Fig. 1. Especially for a con-

cave performance function, PMA overestimate the failure

rate of g because the approximated failure region above

the dash line becomes much larger than the original one

(g(u) > 0) marked with oblique lines. It means that the

target reliability index βt must be corrected to reflect such

the numerical computation error occurred in PMA. 

For doing this, the reliability index βDRM is derived from

the accurate failure rate computation of (7) like (8)

 (8)

It is natural that this βDRM is not the same as the target

reliability index βt. To define a new updated reliability

index β(k+1), a recursive formula is obtained using the

difference between the two reliability indices as follows.

 (9)

where β(k) is the reliability index at the current step with

β(0) = βt at the initial step. The updating process is repeated

until the failure rate  obtained using the MPP-based

DRM is the same as the given target failure rate .

2.3. MPP Update

According to (9), a new MPP has to be sought out in U-

space by solving (3), where the reliability index βt is

replaced with the updated reliability index β(k+1). However,

since such the search process could be computationally

expensive, the updated MPP is approximated without

carrying out a new MPP search as

 (10)

That is, it is assumed that the updated MPP  called

the DRM-based MPP is located along the same radial

direction as the current MPP  as illustrated in Fig. 1. If

the current design is a RBDO optimum, the probability of

failure by DRM will converge to the target failure rate

along with only a few three-step procedures.

3. Case Studies

To examine the accuracy and usefulness of the proposed

MPP-based DRM, two RBDO problems are considered.

Therein, somewhat unsatisfactory RBDO optima are en-

hanced by means of the three-step computational proce-

dure, where three quadrature points are adopted. The first

is a two-dimensional mathematical design problem, and

the second is a practical EM design problem, where a

reliability-based design of a BLDC motor with six design

random variables is attempted.

3.1. Mathematical Model

A RBDO formulation of the mathematical problem is

given by

(11)

where d is a design variable vector defined by d = μ(x),

where μ denotes the mean of x. The random variables are

assumed to comply with normal probability distributions

with a standard deviation (SD) value of 0.3. The target

probability of failure of three constraints is set to be

0.135 %. 

In order to reduce a computational cost required for

Pf

DRM

2

1
11

( ( ) / ) / ( )
n m

DRM j n

f j t i i t
ji

P w g v b  



     

wi

j
vi

j

( ).DRM

DRM fP  

( 1) ( ) ( )k k

DRM t
   

  

Pf

DRM

Pf

tar

* ( 1) ( ) *

1 ( / ) .k k

k k 


u u

uk 1+

*

uk

*

2 2

1 2 1 2

2

1 1 2

2 3 4

2

2

3 1 2

1 2 1 2

min. ( ) ( 10) / 30 ( 10) /120

subject to ( ( ) 0) 0.135% 1,2,3

( ) 1 / 20

( ) 1+ ( 6) ( 6) 0.6( 6)

( ) 1 80 / ( 8 5)

0.9063 0.4226 , 0.4226 0.9063

f i

f d d d d

P g i

g x x

g y y y z

g x x

y x x z x x

      

  

 

       

   

   

d

x

x

x

x

Fig. 2. (Color online) Three different optima and limit-state

constraint functions.
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RBDO, a deterministic design optimization (DDO) corre-

sponding to (11) was first executed with an initial point

(5, 5). Launching at the obtained DDO point, the RBDO

problem of (11) was solved by the conventional PMA-

based RBDO method. Then, its optimum was corrected

by the proposed method so as to meet the target failure

rates of given probabilistic constraints. Three different

optima are compared with each other in Fig. 2, where two

circles have the same radius of a target reliability index t

= Ф1(0.135) at the center of each RBDO optimum. Table

1 presents performance indicators between four different

designs. When engaged in randomness of design variables,

the failure rates of g1 and g2 at the DDO point reach up to

51.8 % and 43.04 %, respectively. 

Meanwhile, the failure rates of g1 and g2 at the conven-

tional RBDO optimum dFORM are close to the target value

0.135 %, but the failure rate of g2 slightly violates the

prescribed probability constraint condition due to the high

nonlinearity of g2. It is observed that such the somewhat

unsatisfactory result was substantially alleviated by the

proposed MPP-based DRM after only two iterative

designs. As shown in Fig. 2, it can be identified that the

improved RDBO optimum dDRM slightly moves towards

the infeasible region of g2 in order to compensate for the

overestimated failure rate in the PMA process.

3.2. BLDC Motor Design

A 5 kW, 8-pole and 12-slot BLDC motor with immersed

permanent magnets for electric vehicles is considered as

in Fig. 3. The outer diameter of a stator is 200 mm,

lamination stack height 38 mm, outer diameter of a rotor

126 mm, and air-gap length 0.7 mm. In general, a bridge

part on the rotor core formed due to the flux barrier (refer

to x1 in Fig. 3) is highly saturated under normal operating

conditions. A commercial EM simulator called MagNet

VII was hereby used to accurately estimate the cogging

torque without an electric loading condition and average

torque at a rated speed of 2,300 rpm [10]. To alleviate a

computationally heavy burden on the RBDO process, a

fourth model of the motor was analyzed with a periodic

boundary condition, and a sinusoidal current was fed to

the stator coils without a motor drive system.

For the purpose of reducing acoustic noise and mech-

anical vibration of the motor in the present of manufactur-

ing tolerances, the design goal is set to minimize the

cogging torque magnitude Tc, and also to satisfy two

probabilistic constraint conditions. The two constraints

are related to the average torque Tavg and torque ripple at

the rated speed. Six design random variables are assumed

to follow to normal probability distributions with a SD

value of 0.1. The wanted failure rates of two constraints is

set to be 5 % (i.e. reliability of 95 %) under the given

design uncertainty. To manage these somewhat compli-

cated requirements, a RBDO formulation can be written

by 

Table 1. Performances Indicators between Four Different

Design Points.

Design

variables
Initial DDO

RBDO

Conventional Proposed

x1 5.0 4.850 4.563 4.626

x2 5.0 0.850 1.962 1.943

f 0.833 3.708 1.723 1.733

Pf (g1) % 0.00 51.80 0.156 0.137

Pf (g2) % 0.00 43.04 0.070 0.138

Pf (g3) % 1.31 0 0 0

Iteration/

Function calls
- 4/52 7/2472 2/90

The failure rates were recalculated at four different design points by
MCS with 200,000 samples.

Fig. 3. One-eighth model and six design random variables.

Table 2. Performances Indicators between Four Different

Designs.

Design

variables
Initial DDO

RBDO

Conventional Proposed

x1 (mm) 0.80 1.51 1.640 1.639

x2 (degree) 36.70 37.42 37.920 37.920

x3 (degree) 2.24 2.06 1.800 1.799

x4 (mm) 7.00 4.88 5.220 5.222

x5 (mm) 38.00 36.00 37.760 37.751

x6 (mm) 0.7 0.67 0.590 0.587

Cogging torque Tc (Nm) 0.684 0.344 0.347 0.347

Average torque Tavg (Nm) 20.52 20.01 20.67 20.68

Torque ripple % 23.4 15.7 13.4 13.7

Pf (g1) % - 49.09 5.88 5.00

Pf (g2) % - 31.57 3.79 3.28

Iteration/FEA calls - 10/227 17/879 1/65
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(12)

where Tmax and Tmin denote the maximum and minimum

torque values, respectively. 

Launching at an initial motor design, three optimum

designs (DDO, conventional RBDO, and improved RBDO)

were obtained one by one according to the same design

procedure used in the previous test model. The performance

indicators between four different designs of the BLDC

motors are presented in Table 2, where failure rate values

at three optima were reevaluated by the first step process

of the proposed MPP-based DRM. It is observed that the

cogging torque and torque ripple amplitudes at the optimum

designs are much smaller than those at the initial one as

seen in Fig. 4, where torque waveforms were calculated

as the rotor rotated from 0 to 45 degrees. When involved

with the randomness of design variables, however, the

DDO design violates the two given probabilistic con-

straints by more than 30 %. It implies that the average

torque and torque ripple of the DDO design cannot satisfy

the confidence level of 95 % under the aforementioned

manufacturing tolerance. On the other hand, the conven-

tional PMA-based RBDO design satisfies the second

probabilistic constraint, but slightly violates the first one.

It is obvious that the proposed RBDO design fulfills both

two probabilistic constraints after only one iterative design,

which requires 65 finite element analysis (FEA) simulations.

4. Conclusion

This paper proposes the MPP-based DRM for accurate

failure rate evaluation of a highly nonlinear EM performance

function and accordingly improved RBDO optimum in

the present of uncertainties. Results show that the pro-

posed method can successfully compensate for numerical

computation errors appearing in the conventional PMA-

based RBDO process.
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