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Parallel magnetic resonance imaging (pMRI) can acquire high temporal resolution to obtain anatomical

images. Among the parallel-imaging techniques, sensitivity encoding (SENSE) is the most widely used. During

the SENSE process, they are previously limited by signal-to-noise ratio degradation and aliasing artifacts owing

to the subsampling effect. Therefore, the objective of this study was to develop and evaluate a novel nonlocal

total variation (new-NLTV) noise reduction algorithm in pMRI with SENSE reconstruction in both simulation

and experiments. According to the results, the proposed algorithm was able to achieve impressive results using

quantitative evaluation factors in simulation and real phantom images. The contrast-to-noise ratio and

coefficient of variation for the algorithm, in particular, were 8.24 and 7.15 times better, respectively, than those

of the noisy image in the phantom study. In conclusion, this study successfully demonstrated the effectiveness of

the new-NLTV noise reduction algorithm in pMRI with SENSE reconstruction. 

Keywords : parallel magnetic resonance imaging, sensitivity encoding reconstruction, new nonlocal total variation

noise reduction algorithm, image processing technique, quantitative evaluation of image performance

1. Introduction

Among frequently used medical-imaging techniques,

magnetic resonance imaging (MRI), which creates images

with high contrast and spatial resolution for anatomical

assessment, is based on the activity of the nuclei in atoms

and has an important use in the detection of diseases in

the field of medical diagnosis [1, 2].

Formation of a magnetic resonance (MR) image is

based on the k-space data in 2D or 3D information by the

pulse sequence. The sampling of k-space data by a

determined number of phase-encoding steps accounts for

the data acquisition time in the acquisition of an MR

image [3]. In MRI, basic pulse sequences are used for

each purpose: the spin echo and gradient echo in which

each gradient is applied in a different direction [4].

However, most pulse sequences have been encoded only

once in a gradient, so it is necessary to apply a series of

gradients continually to fill a given number of encodings.

To overcome this problem, parallel MRI (pMRI), which

can acquire a lower scan time (higher temporal resolu-

tion) without the loss of spatial resolution, has been

developed by several researchers [5]. 

pMRI has made considerable progress by improving

spatial resolution and contrast resolution and decreasing

motion artifacts with high temporal resolution [6]. One of

the basic methods for scan time reduction without

deterioration of image performance is to use a rectangular

field of view (FOV) using axial profile information. This

method is based on representation of fewer phase en-

coding steps in the k-space domain. However, an aliasing

artifact is caused by a rectangular phase-encoding direc-

tion. To cope with this problem, multichannel phased-

array coils that were initially developed to enhance the

signal-to-noise ratio (SNR) in MR images and restricted

rectangular FOV are used [3]. Based on this theory,

Pruessmann et al. proposed a reconstruction method and

strategies with the Fourier transform, i.e., sensitivity

encoding (SENSE) [7]. SENSE can acquire an acute coil

configuration and sampling pattern with a combination of
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sensitivity and gradient information. Fig. 1 shows a

schematic illustration of basic parallel-imaging recon-

struction and SENSE reconstruction. 

Noise in pMRI images, including the SENSE recon-

struction method, has generally been statistically produced

attending to the phased-array coil [8]. In phased-array coil

systems, one can acquire an increasing subsampling data

acquisition rate in the k-space with the reduction of the

phase distortion effect [9]. In addition, in the SENSE

reconstruction image, the resulting SNR with full samples

is related by the “g-factor.” Based on these situations,

Fernandez et al. estimated a final statistical noise model

in SENSE reconstruction with a pMRI system, and the

formula is calculated as follows [8].

.  (1)

where i(x, y) is the noise variance, and Zi is position

dependent.

All final reconstruction images in pMRI follow an

almost complex Gaussian distribution and Rician distribu-

tion [10]. To eliminate the noise component effectively,

MR denoising with image processing based on software

is an important task. Several studies have been conducted

to develop a noise reduction algorithm for diagnostic

images, including MRI images [11-14]. The processing

process of conventional median and Wiener filters is

remarkably simple but has a low ratio for noise elimination

[15]. To increase the efficiency of noise reduction process,

an iterative-based method using a total variation (TV)

noise reduction algorithm was developed [16]. In particular,

among the iteration-based methods, a novel nonlocal TV

(new-NLTV) scheme for denoising has been proposed to

overcome the nonuniformity and improve edge preser-

vation in the image [17]. However, there is not much

research concerning the application of the new-NLTV

noise reduction algorithm in SENSE reconstruction images

with pMRI. 

The purpose of this study was to develop a new-NLTV

noise reduction algorithm and evaluate the image perfor-

mances in a pMRI image with SENSE reconstruction. For

this purpose, simulation and experimental studies were

performed using a 3-T MRI system and a homogeneous

rectangular phantom. The MRiLab, which is a newly

designed, well-validated MRI simulator developed by Liu

et al., was used in this study [18]. To evaluate noise

characteristics quantitatively, the contrast-to-noise ratio

(CNR), coefficient of variance (COV), root mean square

error (RMSE), and edge preservation index (EPI) were

used in a simulation study, and the CNR, COV, and

intensity profile were used in an experimental study.

2. Materials and Methods

2.1. New nonlocal total variation (new-NLTV) noise

reduction algorithm modeling

In pMRI systems, noise occurs because of the inherent

characteristics of the combination of the original signal

and secondary signal (e.g., noise). Liu et al. [19]

i x, y  = Zi

*Zi

Fig. 1. (Color online) Schematic illustration of reconstruction process for basic parallel imaging and sensitivity encoding (SENSE)

with phase array coils.
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introduced a new nonlocal total variation (new-NLTV)

algorithm for image denoising as follows.

,  (2)

,  (3)

,  (4)

where u is the noise-free image, f is the observed image,

 denotes a bounded open subset with a Lipschitzian

boundary,  is the balancing parameter, DNLu is the

nonlocal gradient of u, w(s, t) is a weighting function, G


is the Gaussian kernel of standard deviation, h, and  is

the filtering scale with noise level. For solving the optimi-

zation problem in Eq. (2), the split Bregman method [20]

operates efficiently as follows. 

, s.t. d = DNLu, (5)

 , (6)

,  (7)

,  (8)

where P1 and P2 are positive weights. Computationally,

Eq. (6) is derived for solving uk+1 as follows.

,  (9)

, (10)

and then, one can obtain the update dk+1 using the gene-

ralized shrinkage formula [21] as follows:

. (11)

Finally, the appropriate iteration number of the inner

loop is applied to obtain a satisfactory denoised result. 

2.2. Image acquisition parameter

To study the simulation condition, the new comprehen-

sive MRiLab simulator with a recent graphical processing
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Fig. 2. (Color online) Photo example of MRiLab simulation control console including adjustable MR parameters.



 432  Performance Evaluation of New Nonlocal Total Variation Noise Reduction Algorithm in Parallel Magnetic
…

 Joo-Wan Hong et al.

unit [18] was used. MRiLab version 1.3 is a newly

designed platform that is dedicated to MRI systems. This

simulator can model a new phantom design and enhance

MR sequence design. The accuracy and efficacy of the

MRiLab simulator have been demonstrated by the research

group that produced the program. Fig. 2 shows the main

simulation control console.

For acquiring a real pMRI image, 3-T MRI devices and

an eight-channel phased-array coil were used in this

study. Table 1 shows the MR acquisition parameters. 

2.3. Image quality analysis

The image characteristics in terms of the profile, CNR,

COV, RMSE, and EPI were investigated quantitatively.

The CNR formula can be written as follows.

, (12)

where  and  are the mean and standard deviation in

the region of interest (ROI) (a rectangular ROI in this

case; for example, ROI1 and ROI2 in Figs. 3 and 6),

respectively. Here, the CNR value is presented as a factor

for quantitatively determining the contrast considering

noise fluctuations in the ROI. The COV value can be

defined as follows:

.  (13)

The small COV value indicates the lower noise fluctua-

tion in the ROI. The RMSE is expressed as the difference

between the data of the exact image (x,y) and the

estimated image ( ).

,  (14)

where x and y are the indices of the data in the image

domain. Here, the smaller the RMSE, the greater the

resemblance to the “gold standard” image. The EPI factors

can be expressed mathematically as follows.
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Table 1. MRI data acquisition parameters.

Scan parameter

Repetition time (TR) 600 msec

Time to echo (TE) 8 msec

Minimum slice gap 5 mm

Maximum slice gap 20 mm

Field of view (FOV) 230 mm

Slice thickness 5 mm

SENSE reconstruction Yes

Reconstruction voxel size 0.9 mm

Fig. 3. (Color online) Simulation results of exact image (top left), noisy image (top middle), denoised image with median filter (top

right), denoised image with Wiener filter (bottom left), denoised image with total variation (TV) (bottom middle), and denoised

image with new-nonlocal TV (new-NLTV) (bottom right).
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,

(15)

,  (16)

where  is the mean of the Laplacian filtered images of

the ROI (in this study, 3 × 3 pixels were used) using the

exact image (q1) and the estimated image (q2). The EPI

value has a range of 0 to 1, and the closer this value is to

1, the sharper the edge structure in the image. The details

of the EPI have been investigated extensively in the

literature [22]. 

3. Results and Discussion

In the medical diagnosis field, pMRI with SENSE

reconstruction is growing exponentially in use, because

the device can provide excellent anatomical information.

In pMRI images, noise reduction by using an image-

processing method is particularly important. The purpose

of this study was to use a newly develop denoising

algorithm based on a nonlocal approach and to apply the

acquired pMRI image with SENSE reconstruction.

In this study, a brain MR image was acquired, and noise

was added in the image by using the MRiLab simulator.

Fig. 3 shows the simulation results of the exact image

(top left), the noisy image (top middle), denoised image

with median filter (top right), denoised image with Wiener

filter (bottom left), denoised image with TV (bottom

middle), and denoised image with new-NLTV (bottom

right). Fig. 4 shows the enlarged images of the exact

image (top left), noisy image (top middle), denoised

image with median filter (top right), denoised image with

Wiener filter (bottom left), denoised image with TV

(bottom middle), and denoised image with new-NLTV

(bottom right), as indicated in boxes A and B of Fig. 3.

The denoised image using new-NLTV shows better image

characteristics than the noisy and the other denoised

images while preserving the edge components.

For the quantitative evaluation using a simulated brain

MR image, the CNR, COV, RMSE, and EPI characteristics

were measured, and the results are listed in Fig. 5. Figs. 5

(a) and (b) show that the CNR values are approximately

4.58 (noisy image), 6.02 (denoised image with median

filter), 7.70 (denoised image with Wiener filter), 9.17

(denoised image with TV), and 17.95 (denoised image

with new-NLTV), and the COV values are 6.75 (noisy

image), 5.12 (denoised image with median filter), 2.17

(denoised image with Wiener filter), 1.11 (denoised image

with TV), and 0.75 (denoised image with new-NLTV).

By comparing the denoising methods, the CNR results for

the proposed new-NLTV denoising technique were ap-

proximately 3.92, 2.98, 2.33, and 1.96 times higher than

those of the noisy image, median filter, Wiener filter, and

TV denoising algorithm, respectively. In addition, the

COV results for the proposed new-NLTV denoising

technique were approximately 9.00, 6.83, 2.89, and 1.48

times better than those of the noisy image, median filter,

Wiener filter, and TV denoising algorithm, respectively. 

Fig. 5(c) shows that the RMSE values of the denoised

image with new-NLTV are approximately four times

smaller than those of the noisy image: 8.41 (noisy image),

6.34 (denoised image with median filter), 4.13 (denoised

image with Wiener filter), 3.68 (denoised image with

TV), and 2.72 (denoised image with new-NLTV). The

simulated RMSE increased in order for the proposed

new-NLTV denoising technique, TV denoising algorithm,

Wiener filter, median filter, and noisy image. When

compared with the denoising methods, the RMSE results

EPI = 
 q1 q1, q2– q2– 

 q1 q1, q1– q1–  q2 q2, q2– q2– 
-----------------------------------------------------------------------------------------------------------------------------

 x, y  = x ,y ROI a x, y b x, y 

q

Fig. 4. (Color online) The enlarged images of exact image (top

left), noisy image (top middle), denoised image with median

filter (top right), denoised image with Wiener filter (bottom

left), denoised image with TV (bottom middle), denoised

image with new-NLTV (bottom right), indicated in (a) box A

and (b) box B of Fig. 3.
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Fig. 5. (Color online) Evaluated (a) CNR and (b) COV indicated by predefining regions of interest (ROIs) (i.e., ROI1 and ROI2 in

Fig. 3) and measured (c) RMSE and (d) EPI by means of the exact image for reference in simulation condition.

Fig. 6. (Color online) Experiment results of noisy image (top left), denoised image using median filter (top middle), denoised image

using Wiener filter (top right), denoised image using TV (bottom left), and denoised image using new-NLTV (bottom right).
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using the proposed new-NLTV denoising technique were

approximately 3.09, 2.33, 1.52, and 1.35 times better than

those of the noisy image, median filter, Wiener filter, and

TV denoising algorithm, respectively.

The EPI value of the denoised image with new-NLTV

is closer to that of the noisy image rather than those of

denoised images — see Fig. 5(d). The evaluated EPI

increased in order for the TV denoising algorithm, Wiener

filter, median filter, noisy image, and the proposed new-

NLTV denoising technique. The results indicate that the

new-NLTV algorithm can rarely be effectively operated

to reduce the noise without edge smoothing in pMRI. 

Fig. 6 shows the experiment results for the noisy image

(top left), denoised image using median filter (top middle),

denoised image using Wiener filter (top right), denoised

image using TV (bottom left), and denoised image using

new-NLTV (bottom right). 

Fig. 7 shows the bar graphs of the measured CNR and

COV indicated in boxes ROI1 and ROI2 of Fig. 6. The

CNR results are approximately 2.71 (noisy image), 3.78

(denoised image with median filter), 8.24 (denoised image

with Wiener filter), 12.57 (denoised image with TV), and

22.34 (denoised image with new-NLTV), and the COV

values are 5.22 (noisy image), 3.08 (denoised image with

median filter), 2.71 (denoised image with Wiener filter),

1.55 (denoised image with TV), and 0.73 (denoised image

with new-NLTV). A comparison of the denoising methods

shows that the CNR results for our proposed new-NLTV

denoising technique were approximately 8.24, 5.91, 2.71,

and 1.78 times higher than those of the noisy image,

median filter, Wiener filter, and TV denoising algorithm,

respectively. In addition, the COV results for the proposed

new-NLTV denoising technique were approximately 7.15,

4.22, 3.71, and 2.12 times better than those of the noisy

image, median filter, Wiener filter, and TV denoising

algorithm, respectively.

Fig. 8 shows the intensity profiles measured along the

AB line segments indicated in Fig. 6. Compared with the

profiles of the other images, the profile of the denoised

image using the new-NLTV algorithm shows that it is

highly effective in reducing the noise component. In

addition, we confirmed that NLTV algorithm can provide

various findings of fundamental in MRI image including

image stabilization.

4. Conclusion

Although the pMRI technique is a practical method

with several useful applications, a noise reduction process

is essential in the image. According to the results, the

quantitative evaluation parameters for the proposed new-

Fig. 7. Measured (a) CNR and (b) COV indicated by predefining regions of interest (ROIs) (i.e., ROI1 and ROI2 in Fig. 6).

Fig. 8. (Color online) Measured 1D profiles indicated by red

line AB in Fig. 6.
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NLTV algorithm were better than those of the noisy

image and previously used algorithm or filter both in

simulation and experimental studies. In conclusion, the

results indicate that the proposed algorithm is effective for

denoising in pMRI with SENSE reconstruction.
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