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Diffusion-weighted imaging (DWI) is frequently used in the field of diagnostic medicine to detect various

human diseases. In DWI, noise suppression is very important for achieving high detection accuracy of diseases.

In this study, we develop a deep convolutional neural network (Deep-CNN) noise reduction algorithm and eval-

uate its effectiveness in DWI by performing both simulations and real experiments with a 1.5- and a 3.0-T MRI

system. The results validate the proposed Deep-CNN algorithm for DWI. Compared with previously developed

non-local means (NLM) algorithms, the proposed Deep-CNN algorithm achieves superior quantitative results.

In conclusion, the quantitative results verify that the proposed Deep-CNN algorithm has higher noise reduction

efficiency and image visibility than previously developed algorithms for DWI. 
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1. Introduction

Medical imaging has become an integral technique for

early detection of diseases [1, 2]. Although X-ray based

imaging systems, such as X-ray radiography and computed

tomography (CT), are important tools in medicine, they

present the issue of patients’ exposure to dangerous ionizing

radiation, that is high energy wavelengths [3]. Among

medical imaging techniques, magnetic resonance imaging

(MRI), which can produce images in any plane with no

exposure to ionizing radiation, is being used increasingly

[4-6]. In particular, the advantage of MRI compared to X-

ray based imaging systems is the excellent image quality,

in terms of contrast and spatial resolution [7].

In MRI techniques, diffusion-weighted imaging (DWI),

which is based on the molecular diffusion effect, i.e., the

random movement of molecules (water) in tissues, can

achieve early detection of diseases or subtle changes in

the body. It is being increasingly applied in a variety of

medical diagnosis fields, including brain and musculo-

skeletal applications, owing to its improved gradient

performance and the development of MRI multichannel

surface coils [8, 9]. To perform DWI, a very strong pair

of gradient magnetic fields (diffusion-weighted gradient

fields) is needed in addition to the main magnetic field,

which is essential for acquiring an image. The integral of

the intensity and time of the diffusion-weighted gradient

fields is called the gradient factor or the b-value, and the

numerical value of the degree of diffusion of water is

referred to as the apparent diffusion coefficient (ADC),

which is based on a quantitative measure of tissue diffu-

sivity [8]. Both ADC map-based and diffusion-weighted

images are valuable in the localization of diseases [10]. In

particular, the b-value identifies the sensitivity calculation

to diffusion and is calculated as follows:

, (1)

where G is the gyromagnetic ratio, A is the amplitude of

the two diffusion gradient pulses, ς is the pulse duration,

and Δ is the time between the two pulses. 

The model of the signal intensity with respect to the b-

value can be fitted to each result image. According to a

research by M. C. Mass et al., the image noise depends

strongly on the b-value in both simulations and real

experiments with 1.5- and 3.0-T MRI systems [11]. Thus,

the b-value is very important in DWI to reduce image
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noise and hence analyze images.

Many image processing approaches have been develop-

ed to reduce noise. To effort for the noise suppression for

noise, a variety of algorithm introduced such as total

variation filtering, wavelet filtering, etc [12, 13]. Buades

et al. introduce the non-local means (NLM) algorithm

[14] recently and shown the outstanding results. Its algorithm

implemented the noise suppression through calculating

the mean values at selected the local patches based on an

assumption of self-similarity exist in the noisy image.

However, these methods based on the filtering have

inherent problem; decreasing the spatial resolution by

smoothing while the filter calculate. Recently, noise re-

duction algorithms based on deep convolutional neural

networks (Deep-CNN) with machine-learning have been

developed. In a previous study, a research group proposed

a noise reduction method for low dose CT systems and

demonstrated that the peak signal to noise ratio using a

Deep-CNN algorithm was approximately 1.02 times higher

than that of a high-efficiency total variation algorithm

[15]. Especially, K. Zhang et al. [16] introduced the

DnCNN architecture is well-known for effective noise

reduction. Commonly, the oracle shrink method [17], visu

shrink method [18], and bayes shrink method [19] are

used to determine the thresholding value for noise

reduction. However, these methods are suffered from the

optimization to find the adaptive thresholding range. The

DnCNN architecture can exquisitely separate the noise

component by training the threshold value each of arti-

ficial neurons. Moreover, the convolution filters in each

of perceptrons transfer to the variety sparsity domain,

compared to the discrete cosine transform and wavelet

transform and its process is helping to decide the accurate

thresholding value.

The purpose of this study was to develop a Deep-CNN

noise reduction algorithm and investigate its performances

in DWI. For that purpose, we used a 1.5- and a 3.0-T

MRI systems and imaged a chicken breast phantom. To

evaluate the noise characteristics quantitatively, in this

study, the root-mean-square error (RMSE), structural

similarity (SSIM), contrast-to-noise ratio (CNR), and

coefficient of variation (COV) were used. 

2. Materials and Methods

2.1. Proposed framework for noise reduction in the

DWI data

In MRI systems, image degradation occurs because of

the inherent characteristics of the combination of the

original signal and external signal (for example, noise).

Image restoration is based on the deterioration characteri-

stics of the imaging system, which can be simply model-

ed as follows: 

 ,  (2)

where I(m, n) is a degraded image signal, f (m, n) is the

signal from a region of interest (ROI),  (m, n) denotes

the phase difference of each pixel, and nRe(m, n) and

nIm(m, n) represent the Gaussian white noise in the real

and imaginary parts, respectively. Therefore, the value the

will be visualized is the magnitude of I(m, n), which can

be rewritten as follows:

.(3)

 

Nonlocal self-similarity models are well-known noise

reduction algorithms [20, 21]. Especially, the NLM

algorithm is computed as in Eq. (4):

,  (4)

where Z(s) is a normalized constant of w(s, t), N(s) is a

large search window centered at pixel s, w(s, t) indicates

the similarity between two square patches s and t
centered at s and t, respectively, and is defined as follows:

. (5)

However, these techniques have high computation costs

due to the calculation of the complex optimization and

cannot prevent edge smoothing. In the last few years,

outstanding results have been reported with the appli-

cation of advanced neural network methods [22, 23].

Particularly, Deep-CNN is a machine-learning method

that exploit multiple layers of non-linear information

processing [24]. To successfully separate the noise com-

ponent, we used the DnCNN architecture, which consists

of convolution layers (in our case, 3 × 3 convolutional

filters), batch normalization [25], and ReLU [26], acting

as the activation function. The loss function is implement-

ed by means of back-propagation with adaptive moment

estimation (ADAM) [27]. For training, the model noisy

images were designed using imnoise(·) functions (we

used  = 1 to 10, empirically) in the MATLAB toolbox

(version 8.3, MathWorks, Natick, Massachusetts, USA).

Here, the clean images were preparation for training sets

those are composed of noise-free DWI data from 2,500

views. We generated the 30,420,000 image patches at the

condition of 10 stride (i.e., the image size is 448 × 448

pixels). And then we designed the training sets (i.e.,
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simulated noise patches and their noisy patches)

depending on the sigma values. Here, the 125 views

among the 2500 views are used for the validation and 50

views among the total views are used for the test to

calculate the accuracy. In this training, the root-mean

square error between the label data and predicted data

indicated about 2 × 103. The training conditions are

listed in Table 1.

The noise-free DWI data have a standard deviation of

approximately 1.68 and we can assume that the noise

component was in the range of approximately 5.04 to

5.04 because it follows a normal distribution (e.g., 99.7 %

of the noise component is within the range of 3(x) to 3

(x)). The range of noise in the 12-bit pixel value ratio

was approximately 0.1 %, is negligible. 

Fig. 1 shows a simplified flowchart of the Deep-CNN-

based noise reduction algorithm for DWI. In brief, in the

training scheme, the clean images generated noisy images

and then directly subtracted the clean images to obtain

noise images. Then, the Deep-CNN architecture is applied

and the parameters of the network architecture are estimated

to extract the noise component. After the training, the

noisy image is fed to the trained Deep-CNN architecture

to obtain the residual image, which includes the noise

component. Finally, the restored image is calculated and

subtracted from the noisy image.

2.2. MRI devices and phantom

For acquiring diffusion-weighted images, we used a

1.5-T (Espree, Siemens, Germany) and a 3.0-T (Skyra,

Siemens, Germany) MRI device. The 1.5- and 3.0-T MRI

devices were used with 8 and 20 channel coils, respec-

Table 1. Training conditions of the Deep-CNN in simulations

and experiments.

Environment Specification

Training slices
2500 (5% used for validation, 

2% used for test)

Image size 448 × 448

Patch size 64

Batch size 10

Epoch 150

Stride 2

Number of layers 15

Number of channels 64

Size of convolution filter 3 × 3

Learning rate 10−3

Method for loss function ADAM

Fig. 1. (Color online) Simplified flowchart of the Deep-CNN-based noise-reduction algorithm for DWI.
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tively. We used the echo planar imaging pulse sequence

for DWI; Table 2 shows the MR acquisition parameters.

In addition, we manufactured a chicken breast phantom

using a cylindrical plate with a 100-mm height and 50-

mm diameter in a 150 × 150 × 150 mm3 acrylic plate. To

minimize the interface between tissues and air, distilled

water was poured into the cylindrical plate. Fig. 2 shows

a photograph of the chicken breast phantom. 

2.3. Image quality analysis

The image characteristics in terms of the profile, RMSE,

SSIM, CNR, and COV were investigated quantitatively.

The RMSE is defined as the difference between the data

of the gold standard image (x,y) and the estimated image

( ): 

RMSE(x, y) = ,  (6)

where (x, y) are the indexes of the data in the image

domain. Here, the smaller is the RMSE, the greater is the

resemblance to the gold standard image. The SSIM

factors can be expressed mathematically as follows:

SSIM(x, y) = l(x, y)c(x, y)s(x, y), (7)

SSIM(x, y) = , (8)

where the SSIM is based on three components: luminance

(l), contrast (c), and structure (s). x and y are the local

means in the x and y directions, respectively, x and y

are the standard deviations in the x and y directions,
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Table 2. MRI data acquisition parameters.

Scan parameter 1.5 T 3.0 T

Coil channel 8 20

Repetition time (TR, msec) 4,000 5,500

Time to echo (TE, msec) 83 110

Field of view (FOV, mm2) 240 × 240

Number of excitation (NEX) 2

Slice thickness (mm) 3

Gap (mm) 0.6

Phase encoding direction Right to left

Fig. 2. (Color online) Photograph and dimensions of the

chicken breast phantom.

Fig. 3. (Color online) Simulation results of exact image (top left), generated Gaussian noise image (top middle), noisy image (top

right), restored image using the non-local mean (NLM) algorithm (bottom left), estimated noise image using Deep-CNN (bottom

middle), and restored image using Deep-CNN (bottom right).
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respectively, and xy is the cross-covariance in the image

domain. C1 and C2 are constants between zero and one.

The closer these constants are to 1, the closer the image is

to the exact image. The details of the SSIM have been

investigated extensively in the literature [28]. The CNR is

defined as follows:

,  (9)

where  and  are the mean and standard deviation in

the ROI (a rectangular ROI in our case; for example,

ROI1 and ROI2 in Fig. 5), respectively. Here, the CNR

value shows the characteristic of the contrast considering

noise fluctuations in the ROI. The COV can be expressed

as follows:

. (10)

The COV is also called the “coefficient of dispersion”

[29] and a small COV value indicates a higher image

quality because this factor reflects the noise fluctuations

in the image domain.

3. Results and Discussion

Fig. 3 shows the simulation results of the exact image

(top left), the generated Gaussian noise image (top middle),

the noisy image (top right), the image restored using the

NLM (bottom left), the noise image estimated using the

Deep-CNN (bottom middle), and the image restored using

Deep-CNN (bottom right). Note that the image restored

using Deep-CNN presents higher quality than the noisy

and restored images using the NLM algorithm. Fig. 4(a)
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Fig. 4. (Color online) (a) 1D intensity profiles measured along

the AB line segments indicated in Fig. 3 and (b) the measured

RMSE and SSIM values from the simulation images in Fig. 4

for the noisy, restored with NLM, and restored with Deep-

CNN cases.

Fig. 5. (Color online) Experiment results of noisy image (top

left), image restored using NLM (top middle), image restored

using Deep-CNN (top right), clean image with b-value of zero

(bottom left), ADC map from the clean image and restored

image using NLM (bottom middle), and ADC map from the

clean image and restored image using Deep-CNN (bottom

right); (a) 1.5 T and (b) 3.0 T. 
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shows the intensity profiles measured along the  line

segments indicated in Fig. 3. Note that, compared to the

image restored using the NLM algorithm, the profile of

the image restored using the Deep-CNN is much closer to

that of the exact image. For the quantitative evaluation,

we measured the RMSE and SSIM characteristics and the

results are reported in in Fig. 3(b). The RMSE values are

approximately 0.32 (noisy image), 0.13 (restored image

using NLM), and 0.05 (restored image using Deep-CNN.

The SSIM values were approximately 0.02 (noisy image),

0.55 (restored image using NLM), and 0.97 (restored

image using Deep-CNN). These results indicate that the

proposed framework was very effective in reducing the

noise component of the magnetic resonance images. 

Fig. 5 shows the experiment results of the noisy image

(top left), the image restored using the NLM (top middle),

the image restored using Deep-CNN (top right), the clean

image with a b-value of zero (bottom left), the ADC map

from the clean image and the image restored using NLM

(bottom middle), and the ADC map from clean image and

the image restored using Deep-CNN (bottom right). Here,

(a) and (b) are obtained in the 1.5 and 3.0 T condition.

Note that the restored and ADC images using the Deep-

CNN are much more clearly visible then the restored and

ADC images using the NLM algorithm. Fig. 6 shows the

CNR and COV values in the (a) 1.5 T and (b) 3.0 T

conditions. Here, we predefined the ROI1 and ROI2 in

Fig. 5. The CNR values in the 1.5 T images were ap-

proximately 1.75 (noisy image), 5.78 (image restored

using NLM), and 7.15 (image restored using Deep-CNN),

while in the 3.0 T images they were 3.72 (noisy image),

6.63 (image restored using NLM), and 9.11 (image

restored using Deep-CNN). Furthermore, the COV values

of the 1.5 T images were approximately 0.98 (noisy

image), 0.52 (restored image using NLM), and 0.31

(restored image using Deep-CNN) and those of the 3.0 T

images were 0.57 (noisy image), 0.26 (restored image

using NLM), and 0.14 (restored image using Deep-CNN).

Note that, compared to all other images, the image

restored using the proposed framework exhibits a superior

noise-suppression performance, while preserving the edge

structure in the MRI.

4. Conclusion

In this study, we investigated and analyzed the pro-

posed Deep-CNN-based noise-suppression framework in

DWI. We validated the proposed scheme by performing

simulations and experiments. According to our results, the

RMSE values of the images restored using Deep-CNN

was approximately 6 and 2 times smaller than those of

other images and the SSIM value of the image restored

using the proposed scheme was approximately 50 and 2

times higher than those of images in the simulation.

Especially, the inner structures of the numerical phantom

were sharper in the image restored using Deep-CNN than

in all other images. Moreover, the CNR values of images

processed with the proposed algorithm were approximately

1.3 times higher than those of the images restored using

the NLM algorithm. The COV values also improved by

factors of approximately 2, compared to those of the

images restored using the NLM algorithm. In conclusion,

our results indicated that the proposed scheme is effective

in DWI noise reduction.
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